Advertisement

Brain Imaging and Behavior

, Volume 2, Issue 4, pp 227–231 | Cite as

New Horizons for the Next Era of Human Brain Imaging, Cognitive, and Behavioral Research: Pacific Rim Interactivity

  • John Darrell Van HornEmail author
  • Peter A. Bandettini
  • Kang Cheng
  • Gary F. Egan
  • V. Andrew Stenger
  • Stephen Strother
  • Arthur W. Toga
Article

Abstract

Beginning in the 1990’s, substantial advances have been made in the ability to image the living human brain. Functional MRI, PET, and other modalities have been developed to provide a rich means for assessing brain function and structure across spatial and temporal dimensions. Such methods are now the preferred means to examine the brain in vivo, with several thousand articles now appearing in the literature each year. The next era of human brain imaging is upon us now as technological developments reach a level where data can be processed quickly and combined with other biological information to provide fundamentally new applications and insights. This new era will involve and require the collaborative participation of leading research groups from around the world to share information and expertise for understanding observed effects and synthesizing these into new knowledge. One particular community that is gaining in its prominence in the field is that of the Pacific Rim, whose collective research efforts present an important corpus of research effort into brain structure and function. The Pacific Rim represents an important community of researchers interested in the greater sharing of ideas. In this special issue of Brain Imaging and Behavior, we focus on emerging areas of research that utilize brain imaging methodology, and discuss how current developments are driving the expansion of functional imaging research. Moreover, we focus on the robust interaction of researchers from around the Pacific Rim whose collaborations are significantly shaping the future of brain imaging.

Keywords

Neuroscience Neuroimaging Computational biology Cognition Behavior International collaboration Grid Pacific rim 

Notes

Acknowledgements

The special issue editors wish to recognize the support of the International Brain Research Organization (IBRO), University of California Pacific Rim Institute, the National Center for Research Resources (NCRR), and the International Society for Magnetic Resonance in Medicine (ISMRM), The Institute for Collaborative Biotechnology (ICB) at UC Santa Barbara, The International Neuroinformatics Coordinating Facility (INCF), and Sun Microsystems. We also would like to thanks Ms. Amanda Hammond and Mr. Vaughan Greer of the Laboratory of Neuroimaging (LONI) for their efforts with preparing cover artwork. Finally, we extend our thanks to the Editor-in-Chief of Brain Imaging and Behavior, Professor Andrew Saykin, for his encouragement and enthusiasm for this special issue.

References

  1. Amari, S., Beltrame, F., et al. (2002). Neuroinformatics: the integration of shared databases and tools towards integrative neuroscience. Journal of Integrative Neuroscience, 1(2), 117–128. doi: 10.1142/S0219635202000128.PubMedCrossRefGoogle Scholar
  2. Bammer, R., Acar, B., et al. (2003). In vivo MR tractography using diffusion imaging. European Journal of Radiology, 45(3), 223–234. doi: 10.1016/S0720-048X(02)00311-X.PubMedCrossRefGoogle Scholar
  3. Bandettini, P. (2007). Functional MRI today. International Journal of Psychophysiology, 63, 138–145. doi: 10.1016/j.ijpsycho.2006.03.016.PubMedCrossRefGoogle Scholar
  4. Bandettini, P. A., Wong, E. C., et al. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25(2), 390–397. doi: 10.1002/mrm.1910250220.PubMedCrossRefGoogle Scholar
  5. Basser, P. J., & Jones, D. K. (2002). Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR in Biomedicine, 15(7–8), 456–467. doi: 10.1002/nbm.783.PubMedCrossRefGoogle Scholar
  6. Bellgowan, P. S., Bandettini, P. A., et al. (2006). Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. NeuroImage, 29(4), 1244–1251. doi: 10.1016/j.neuroimage.2005.08.042.PubMedCrossRefGoogle Scholar
  7. Boesz, C., & Lloyd, N. (2008). Collaborations: investigating international misconduct. Nature, 452(7188), 686−687. doi: 10.1038/452686a.PubMedCrossRefGoogle Scholar
  8. Buxton, R. B. (2001). The elusive initial dip. NeuroImage, 13(6 Pt 1), 953−958. doi: 10.1006/nimg.2001.0814.PubMedGoogle Scholar
  9. Casey, B. J., Giedd, J. N., et al. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54(1−3), 241–257. doi: 10.1016/S0301-0511(00)00058-2.PubMedCrossRefGoogle Scholar
  10. Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2 Pt 1), 261–270. doi: 10.1016/S1053-8119(03)00049-1.PubMedCrossRefGoogle Scholar
  11. D’Esposito, M. (2000). Functional neuroimaging of cognition. Seminars in Neurology, 20(4), 487–498. doi: 10.1055/s-2000-13182.PubMedCrossRefGoogle Scholar
  12. Dale, A. M., Liu, A. K., et al. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26(1), 55–67. doi: 10.1016/S0896-6273(00)81138-1.PubMedCrossRefGoogle Scholar
  13. Friston, K. J., & Price, C. J. (2001). Generative models, brain function and neuroimaging. Scandinavian Journal of Psychology, 42(3), 167–177. doi: 10.1111/1467-9450.00228.PubMedCrossRefGoogle Scholar
  14. Golay, X., Jiang, H., et al. (2002). High-resolution isotropic 3D diffusion tensor imaging of the human brain. Magnetic Resonance in Medicine, 47(5), 837–843. doi: 10.1002/mrm.10143.PubMedCrossRefGoogle Scholar
  15. Halgren, E., Raij, T., et al. (2000). Cognitive response profile of the human fusiform face area as determined by MEG. Cerebral Cortex (New York, N.Y.), 10(1), 69–81. doi: 10.1093/cercor/10.1.69.CrossRefGoogle Scholar
  16. Hariri, A. R., & Weinberger, D. R. (2003). Imaging genomics. British Medical Bulletin, 65, 259–270. doi: 10.1093/bmb/65.1.259.PubMedCrossRefGoogle Scholar
  17. Jorm, A. F., Masaki, K. H., et al. (2005). Cognitive deficits 3 to 6 years before dementia onset in a population sample: the Honolulu-Asia aging study. Journal of the American Geriatrics Society, 53(3), 452–455. doi: 10.1111/j.1532-5415.2005.53163.x.PubMedCrossRefGoogle Scholar
  18. Kondro, W. (2007). Research funding. Canadian institutes get windfall without the bother of competition. Science, 315(5820), 1779–1780. doi: 10.1126/science.315.5820.1779a.PubMedCrossRefGoogle Scholar
  19. Madden, D. J., Spaniol, J., et al. (2007). Adult age differences in the functional neuroanatomy of visual attention: a combined fMRI and DTI study. Neurobiology of Aging, 28(3), 459–476. doi: 10.1016/j.neurobiolaging.2006.01.005.PubMedCrossRefGoogle Scholar
  20. Mazziotta, J., Toga, A., et al. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1412), 1293–1322. doi: 10.1098/rstb.2001.0915.PubMedCrossRefGoogle Scholar
  21. Mitka, M. (2007). Scientists warn NIH funding squeeze hampering biomedical research. Journal of the American Medical Association, 297(17), 1867–1868. doi: 10.1001/jama.297.17.1867.PubMedCrossRefGoogle Scholar
  22. Narr, K. L., Bilder, R. M., et al. (2005). Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cerebral Cortex (New York, N.Y.), 15(6), 708–719. doi: 10.1093/cercor/bhh172.CrossRefGoogle Scholar
  23. Nature Editorial (2008). Science in retreat. Nature, 451(7181), 866. doi: 10.1038/451866a.CrossRefGoogle Scholar
  24. Norman, K. A., Polyn, S. M., et al. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430. doi: 10.1016/j.tics.2006.07.005.PubMedCrossRefGoogle Scholar
  25. Ogawa, S., Lee, T. M., et al. (2000). An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11026–11031. doi: 10.1073/pnas.97.20.11026.PubMedCrossRefGoogle Scholar
  26. Ogawa, S., Tank, D. W., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5951–5955. doi: 10.1073/pnas.89.13.5951.PubMedCrossRefGoogle Scholar
  27. Pantelis, C., Velakoulis, D., et al. (2007). Neuroimaging and emerging psychotic disorders: the Melbourne ultra-high risk studies. International Review of Psychiatry (Abingdon, England), 19(4), 371–381. doi: 10.1080/09540260701512079.CrossRefGoogle Scholar
  28. Rouse, R. (2000). Survey shows Australian scientists' discontent. Nature Medicine, 6(1), 10. doi: 10.1038/71448.PubMedCrossRefGoogle Scholar
  29. Saczynski, J. S., Pfeifer, L. A., et al. (2006). The effect of social engagement on incident dementia: the Honolulu-Asia Aging Study. American Journal of Epidemiology, 163(5), 433–440. doi: 10.1093/aje/kwj061.PubMedCrossRefGoogle Scholar
  30. Smith, S. M., Jenkinson, M., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.PubMedCrossRefGoogle Scholar
  31. Spinney, L. (2004). China opens neuroimaging center. Scientist (Philadelphia, Pa.), 5(1), 3.Google Scholar
  32. Stewart, R., White, L. R., et al. (2007). Twenty-six-year change in total cholesterol levels and incident dementia: the Honolulu-Asia Aging Study. Archives of Neurology, 64(1), 103–107. doi: 10.1001/archneur.64.1.103.PubMedCrossRefGoogle Scholar
  33. Van Horn, J. D., Dobson, J., et al. (2006). Grid-Based computing and the future of neuroscience computation. In C. Senior, T. Russell, & M. S. Gazzaniga (Eds.), Methods in Mind (pp. 141–170). Cambridge: MIT.Google Scholar
  34. Van Horn, J. D., & Gazzaniga, M. S. (2005). Maximizing information content in shared neuroimaging studies of cognitive function. In S. H. Koslow, & A. Subramanian (Eds.), Databasing the Brain: From Data to Knowledge. New York: Wiley and Sons.Google Scholar
  35. Wells, W. A. (2007). The returning tide: how China, the world's most populous country, is building a competitive research base. The Journal of Cell Biology, 176(4), 376–401. doi: 10.1083/jcb.200701150.PubMedCrossRefGoogle Scholar
  36. Yamashita, O., Sadato, N., et al. (2005). Evaluating frequency-wise directed connectivity of BOLD signals applying relative power contribution with the linear multivariate time-series models. NeuroImage, 25(2), 478–490. doi: 10.1016/j.neuroimage.2004.11.042.PubMedCrossRefGoogle Scholar

Copyright information

© GovernmentEmployee: University of California Los Angeles, Los Angeles, CA USA 2008

Authors and Affiliations

  • John Darrell Van Horn
    • 1
    Email author
  • Peter A. Bandettini
    • 2
  • Kang Cheng
    • 3
  • Gary F. Egan
    • 4
  • V. Andrew Stenger
    • 5
  • Stephen Strother
    • 6
  • Arthur W. Toga
    • 1
  1. 1.Laboratory of Neuro Imaging (LONI)University of California Los AngelesLos AngelesUSA
  2. 2.Functional Imaging Methods Unit, Laboratory of Brain and CognitionNIMHBethesdaUSA
  3. 3.Laboratory for Cognitive Brain MappingRiken Brain Science InstituteSaitamaJapan
  4. 4.Howard Florey Institute, Centre for NeuroscienceUniversity of MelbourneParkvilleAustralia
  5. 5.Department of MedicineHonoluluUSA
  6. 6.Rotman Research InstituteTorontoCanada

Personalised recommendations