Advertisement

Brain Imaging and Behavior

, 2:258 | Cite as

Meeting the Challenges of Neuroimaging Genetics

  • Greig I. de Zubicaray
  • Ming-Chang Chiang
  • Katie L. McMahon
  • David W. Shattuck
  • Arthur W. Toga
  • Nicholas G. Martin
  • Margaret J. Wright
  • Paul M. Thompson
Article

Abstract

As research encompassing neuroimaging and genetics gains momentum, extraordinary information will be uncovered on the genetic architecture of the human brain. However, there are significant challenges to be addressed first. Not the least of these challenges is to accomplish the sample size necessary to detect subtle genetic influences on the morphometry and function of the healthy brain. Aside from sample size, image acquisition and analysis methods need to be refined in order to ensure optimum sensitivity to genetic and complementary environmental influences. Then there is the vexing issue of interpreting the resulting data. We describe how researchers from the east coast of Australia and the west coast of America have embarked upon a collaboration to meet these challenges using data currently being collected from a large-scale twin study, and offer some opinions about future directions in the field.

Keywords

Neuroimaging Genetics Heritability High-angular resolution diffusion imaging (HARDI) ACE modeling 

Notes

Acknowledgements

This research was supported by the National Institute for Child Health and Human Development, USA (Grant Number 1R01HD050735) and National Health and Medical Research Council, Australia (Project Grant 496682).

References

  1. Bates, T. C., Luciano, M., Castles, A., Coltheart, M., Wright, M. J., & Martin, N. G. (2007). Replication of reported linkages for dyslexia and spelling and suggestive evidence for novel regions on chromosomes 4 and 17. European Journal of Human Genetics, 15, 194–203. doi: 10.1038/sj.ejhg.5201739.PubMedCrossRefGoogle Scholar
  2. Blokland, G. A., McMahon, K. L., Hoffman, J., Zhu, G., Meredith, M., Martin, N. G., Thompson, P. M., de Zubicaray, G. I., Wright, M. J. (2008). Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: a twin fMRI study. in press, doi: 10.1016/j.biopsycho.2008.03.006
  3. Chiang, M.-C., Barysheva, M., Lee, A. D., Madsen, S. K., Klunder, A. D., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Meredith, M., Wright, M. J., Srivastava, A., Balov, N., & Thompson, P. M. (2008). Mapping genetic influences on brain fiber architecture with high angular resolution diffusion imaging (HARDI), 5th IEEE Symposium on Biomedical Imaging (ISBI 2008), 871–874.Google Scholar
  4. Chou, Y-Y., Lepore, N., de Zubicaray, G. I., Carmichael, O., Becker, J., Toga, A., & Thompson, P. M. (2008). Automated ventricular mapping with multi-atlas fluid image alignment reveals genetic effects in Alzheimer’s disease. NeuroImage, 40, 615–630.PubMedCrossRefGoogle Scholar
  5. Côté, C., Beauregard, M., Girard, A., Mensour, B., Mancini-Marie, A., & Perusse, D. (2007). Individual variation in neural correlates of sadness in children: a twin fMRI study. Human Brain Mapping, 28, 482–487.PubMedCrossRefGoogle Scholar
  6. Freedman, M. L., Reich, D., Penney, K. L., McDonald, G. J., Mignault, A. A., Patterson, N., Gabriel, S. B., Topol, E. J., Smoller, J. W., Pato, C. N., Pato, M. T., Petryshen, T. L., Kolonel, L. N., Lander, E. S., Sklar, P., Henderson, B., Hirschhorn, J. N., & Altshuler, D. (2004). Assessing the impact of population stratification on genetic association studies. Nature Genetics, 36, 388–393.PubMedCrossRefGoogle Scholar
  7. Glahn, D. C., Thompson, P. M., & Blangero, J. (2007). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28, 488–501.PubMedCrossRefGoogle Scholar
  8. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaitiuzis, C., Nugent, T. F., Herman, D. H., Classen, L., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood and adolescence. Proceedings of the National Academy of Sciences U S A, 101, 8174–8179.CrossRefGoogle Scholar
  9. Luciano, M., Lind, P., Deary, I., Payton, A., Posthuma, D., Butcher, L., Bochdanovits, Z., Whalley, L., Visscher, P., Harris, S., Polderman, T., Davis, O., Wright, M., Starr, J., de Geus, E., Bates, T., Montgomery, G., Boomsma, D., Martin, N., & Plomin, R. (2008). Testing replication of a 5-SNP set for general cognitive ability in six population samples. European Journal of Human Genetics. doi: 10.1038/ejhg.2008.100.
  10. Matthews, S. C., Simmons, A. N., Strigo, I., Jang, K., Stein, M. B., & Paulus, M. P. (2007). Heritability of anterior cingulate response to conflict: an fMRI study in female twins. NeuroImage, 38, 223–227.PubMedCrossRefGoogle Scholar
  11. Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., Huynh, K. D., Brunner, F., Corneveaux, J., Osborne, D., Wollmer, M. A., Aerni, A., Coluccia, D., Hänggi, J., Mondadori, C. R., Buchmann, A., Reiman, E. M., Caselli, R. J., Henke, K., & de Quervain, D. J. (2006). Common Kibra alleles are associated with human memory performance. Science, 314, 475–478.PubMedCrossRefGoogle Scholar
  12. Peper, J. S., Brouwer, R. M., Boomsma, D. I., Kahn, R. S., & Pol, H. E. H. (2007). Genetic influence on human brain structure: a review of brain imaging studies in twins. Human Brain Mapping, 28, 464–473.PubMedCrossRefGoogle Scholar
  13. Pfefferbaum, A., Sullivan, E. V., & Carmelli, D. (2001). Genetic regulation of regional microstructure of the corpus callosum in late life. Neuroreport, 12, 1677–1681.PubMedCrossRefGoogle Scholar
  14. Pfefferbaum, A., Sullivan, E. V., & Carmelli, D. (2004). Morphological changes in aging brain structures are differentially affected by time-linked environmental influences despite strong genetic stability. Neurobiology of Aging, 25, 175–183.PubMedCrossRefGoogle Scholar
  15. Polk, T. A., Park, J., Smith, M. R., & Park, D. C. (2007). Nature versus nurture in ventral visual cortex: a functional magnetic resonance imaging study of twins. Journal of Neuroscience, 27, 13921–13925.PubMedCrossRefGoogle Scholar
  16. Schmitt, J. E., Eyler, L. T., Giedd, J. N., Kremen, W. S., Kendler, K. S., & Neale, M. C. (2007). Review of twin and family studies on neuroanatomic phenotypes and typical neurodevelopment. Twin Research and Human Genetics, 10, 683–694.PubMedCrossRefGoogle Scholar
  17. Tan, H. Y., Chen, Q., Goldberg, T. E., Mattay, V. S., Meyer-Lindenberg, A., Weinberger, D. R., & Callicott, J. H. (2007). Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory. Journal of Neuroscience, 27, 13393–13401.PubMedCrossRefGoogle Scholar
  18. Toga, A. W., & Thompson, P. M. (2005). Genetics of brain structure and intelligence. Annual Review of Neuroscience, 28, 1–23.PubMedCrossRefGoogle Scholar
  19. Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678.CrossRefGoogle Scholar
  20. Westmeyer, G. G., & Jasanoff, A. (2007). Genetically controlled MRI contrast mechanisms and their prospects in systems neuroscience research. Magnetic Resonance Imaging, 25, 1004–1010.PubMedCrossRefGoogle Scholar
  21. Wright, M. J., & Martin, N. G. (2004). Brisbane adolescent twin study: outline of study methods and research projects. Australian Journal of Psychology, 56, 65–78.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Greig I. de Zubicaray
    • 1
    • 4
  • Ming-Chang Chiang
    • 2
  • Katie L. McMahon
    • 1
  • David W. Shattuck
    • 2
  • Arthur W. Toga
    • 2
  • Nicholas G. Martin
    • 3
  • Margaret J. Wright
    • 3
  • Paul M. Thompson
    • 2
  1. 1.Centre for Magnetic ResonanceUniversity of QueenslandBrisbaneAustralia
  2. 2.Laboratory of Neuro Imaging, Department of NeurologyUCLA School of MedicineLos AngelesUSA
  3. 3.Genetic Epidemiology LaboratoryQueensland Institute of Medical ResearchBrisbaneAustralia
  4. 4.fMRI Laboratory, Centre for Magnetic ResonanceThe University of QueenslandBrisbaneAustralia

Personalised recommendations