Brain Imaging and Behavior

, Volume 2, Issue 2, pp 59–73 | Cite as

A Surgical Planning Method for Functional MRI Assessment of Language Dominance: Influences from Threshold, Region-of-Interest, and Stimulus Mode

  • Ralph O. Suarez
  • Stephen Whalen
  • James P. O’Shea
  • Alexandra J. Golby
Article

Abstract

Presurgical determination of language laterality is an important step for assessing potential risk of dysfunction resulting from brain resection within or near suspected language areas. Image-based functional MRI (fMRI) methods seek to address limitations to the clinical gold-standard technique by offering a safer, less costly, and non-invasive alternative. In this study we outline a set of protocols for objective determination of langue-specific asymmetry from fMRI activation maps. We studied 13 healthy, right-handed volunteers using a vocalized antonym-generation task. Initially, using the standard threshold-dependent laterality index (LI) procedure, we demonstrated an undesirably high degree of intra-subject variability and indeterminacy in LI value. We addressed this issue by implementing a novel threshold-independent method, resulting in a single, unambiguous LI for each subject. These LIs were then averaged across the group and used to compare functional laterality within the whole hemispheric volumes and six intra-hemispheric regions-of-interest (ROIs). We noted that as a result of increased bilateral activation from vocalizations, laterality assessment calculated from the whole hemisphere resulted in insignificant asymmetry. However, by focusing the LI exclusively on the inferior frontal (IFG) and supramarginal gyri (SMG), robust leftward asymmetries were observed. We also examined the influence of stimulus mode on the group mean ROI LI, and observed an increase in IFG asymmetry using visual mode, and in SMG using the auditory mode. Based on these findings, we make recommendations for optimized presurgical protocols.

Keywords

Laterality index (LI) Language dominance fMRI threshold Vocalized language Region-of-interest Presurgical mapping 

References

  1. Abrahams, S., Goldstein, L. H., Simmons, A., Brammer, M. J., Williams, S. C., Giampietro, V. P., et al. (2003). Functional magnetic resonance imaging of verbal fluency and confrontation naming using compressed image acquisition to permit overt responses. Human Brain Mapping, 20(1), 29–40 (Sep).PubMedCrossRefGoogle Scholar
  2. Adcock, J. E., Wise, R. G., Oxbury, J. M., Oxbury, S. M., & Matthews, P. M. (2003). Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage, 18(2), 423–38 (Feb).PubMedCrossRefGoogle Scholar
  3. Ammerman, J. M., Caputy, A. J., & Potolicchio, S. J. (2005). Endovascular ablation of a temporal lobe epileptogenic focus-a complication of Wada testing. Acta Neurologica Scandinavica, 112(3), 189–91 (Sep).PubMedCrossRefGoogle Scholar
  4. Angrilli, A., Elbert, T., Cusumano, S., Stegagno, L., & Rockstroh, B. (2003). Temporal dynamics of linguistic processes are reorganized in aphasics’’ cortex: An EEG mapping study. Neuroimage, 20(2), 657–66 (Oct).PubMedCrossRefGoogle Scholar
  5. Baciu, M. V., Watson, J. M., Maccotta, L., McDermott, K. B., Buckner, R. L., Gilliam, F. G., et al. (2005). Evaluating functional MRI procedures for assessing hemispheric language dominance in neurosurgical patients. Neuroradiology, 47(11), 835–44 (Nov).PubMedCrossRefGoogle Scholar
  6. Bahn, M. M., Lin, W., Silbergeld, D. L., Miller, J. W., Kuppusamy, K., Cook, R. J., et al. (1997). Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. American Journal of Roentgenology, 169(2), 575–579 (Aug).PubMedGoogle Scholar
  7. Baldo, J. V., Schwartz, S., Wilkins, D., & Dronkers, N. F. (2006). Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. Journal of the International Neuropsychological Society, 12(6), 896–900 (Nov).PubMedCrossRefGoogle Scholar
  8. Barbizet, J., Duizabo, P., & Flavigny, R. (1975). [Role of the frontal lobes in language. (A neuropsychological and experimental study)]. Revista de Neurología (Paris), 131(8), 525–544 (Aug).Google Scholar
  9. Benson, R. R., FitzGerald, D. B., LeSueur, L. L., Kennedy, D. N., Kwong, K. K., Buchbinder, B. R., et al. (1999). Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology, 1052(4), 798–809 (Mar).Google Scholar
  10. Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17(1), 353–62 (Jan 1).PubMedGoogle Scholar
  11. Binder, J. R., Swanson, S. J., Hammeke, T. A., Morris, G. L., Mueller, W. M., Fischer, M., et al. (1996). Determination of language dominance using functional MRI: A comparison with the Wada test. Neurology, 46(4), 978–84 (Apr).PubMedGoogle Scholar
  12. Birn, R. M., Bandettini, P. A., Cox, R. W., & Shaker, R. (1999). Event-related fMRI of tasks involving brief motion. Human Brain Mapping, 7(2), 106–114.PubMedCrossRefGoogle Scholar
  13. Birn, R. M., Cox, R. W., & Bandettini, P. A. (2004). Experimental designs and processing strategies for fMRI studies involving overt verbal responses. Neuroimage, 23(3), 1046–58 (Nov).PubMedCrossRefGoogle Scholar
  14. Boatman, D., Freeman, J., Vining, E., Pulsifer, M., Miglioretti, D., Minahan, R., et al. (1999). Language recovery after left hemispherectomy in children with late-onset seizures. Annals of Neurology, 46(4), 579–86 (Oct).PubMedCrossRefGoogle Scholar
  15. Bookheimer, S. Y., Zeffiro, T. A., Blaxton, T., Gaillard, W., & Theodore, W. (1995). Regional cerebral blood flow during object naming and word reading. Human Brain Mapping, 3, 93–106.CrossRefGoogle Scholar
  16. Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Choy, J., Gitelman, D. R., et al. (2003). Modality-specific and -independent developmental differences in the neural substrate for lexical processing. Journal of Neurolinguistics, 16(4–5), 383–405.PubMedCrossRefGoogle Scholar
  17. Booth, J. R., Burman, D. D., Van Santen, F. W., Harasaki, Y., Gitelman, D. R., Parrish, T. B., et al. (2001). The development of specialized brain systems in reading and oral-language. Child Neuropsychology, 7(3), 119–41 (Sep).PubMedGoogle Scholar
  18. Booth, J. R., Lu, D., Burman, D. D., Chou, T. L., Jin, Z., Peng, D. L., et al. (2006). Specialization of phonological and semantic processing in Chinese word reading. Brain Research, 1071(1), 197–207 (Feb 3).PubMedCrossRefGoogle Scholar
  19. Borowsky, R., Owen, W. J., Wile, T. L., Friesen, C. K., Martin, J. L., & Sarty, G. E. (2005). Neuroimaging of language processes: fMRI of silent and overt lexical processing and the promise of multiple process imaging in single brain studies. Canadian Association of Radiologists Journal, 56(4), 204–13 (Oct).PubMedGoogle Scholar
  20. Branco, D. M., Suarez, R. O., Whalen, S., O'Shea, J. P., Nelson, A. P., da Costa, J. C., et al. (2006). Functional MRI of memory in the hippocampus: Laterality indices may be more meaningful if calculated from whole voxel distributions. Neuroimage, 1532(2), 592–602 (Aug).CrossRefGoogle Scholar
  21. Breier, J. I., Simos, P. G., Zouridakis, G., Wheless, J. W., Willmore, L. J., Constatinou, J. E., et al. (1999). Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology, 53(5), 938–945 (Sep 22).PubMedGoogle Scholar
  22. Broca, P. P. (1861). Perte de la parole ramolissement chronique et destruction partielle du lobe antérieur gauche de cerveau. Bulletins de la Société d’anthropologie de Paris, 2, 235–238.Google Scholar
  23. Bryden, M. P., Hecaen, H., & DeAgostini, M. (1983). Pattern of cerebral organization. Brain and Language, 20, 249–262.PubMedCrossRefGoogle Scholar
  24. Bullmore, E. T., Brammer, M. J., Rabe-Hesketh, S., Curtis, V. A., Morris, R. G., Williams, S. C., et al. (1999). Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Human Brain Mapping, 7(1), 38–48.PubMedCrossRefGoogle Scholar
  25. Chee, M. W., O'Craven, K. M., Bergida, R., Rosen, B. R., & Savoy, R. L. (1999). Auditory and visual word processing studied with fMRI. Human Brain Mapping, 7(1), 15–28.PubMedCrossRefGoogle Scholar
  26. Cohen, M. S., & DuBois, R. M. (1999). Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 10(1), 33–40 (Jul).PubMedCrossRefGoogle Scholar
  27. de Zubicaray, G. I., Wilson, S. J., McMahon, K. L., & Muthiah, S. (2001). The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Human Brain Mapping, 14(4), 218–27 (Dec).PubMedCrossRefGoogle Scholar
  28. Deblaere, K., Boon, P. A., Vandemaele, P., Tieleman, A., Vonck, K., Vingerhoets, G., et al. (2004). MRI language dominance assessment in epilepsy patients at 1.0 T: Region of interest analysis and comparison with intracarotid amytal testing. Neuroradiology, 46(6), 413–20 (Jun).PubMedCrossRefGoogle Scholar
  29. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–55 (Jan 31).PubMedCrossRefGoogle Scholar
  30. Friston, K., Fletcher, P., Josephs, O., Holmes, A., Rugg, M., & Turner, R. (1998). Event-related fMRI: Characterizing differential responses. Neuroimage, 7, 30–40.PubMedCrossRefGoogle Scholar
  31. Frost, J. A., Binder, J. R., Springer, J. A., Hammeke, T. A., Bellgowan, P. S., Rao, S. M., et al. (1999). Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain, 122(Pt 2), 199–208 (Feb).PubMedCrossRefGoogle Scholar
  32. Goldmann, R. E., & Golby, A. J. (2005). Atypical language representation in epilepsy: Implications for injury-induced reorganization of brain function. Epilepsy & Behavior, 6(4), 473–487 (Review, Jun).CrossRefGoogle Scholar
  33. Haller, S., Radue, E. W., Erb, M., Grodd, W., & Kircher, T. (2005). Overt sentence production in event-related fMRI. Neuropsychologia, 43(5), 807–814.PubMedCrossRefGoogle Scholar
  34. Hertz-Pannier, L., Chiron, C., Jambaque, I., Renaux-Kieffer, V., Van de Moortele, P. F., Delalande, O., et al. (2002). Late plasticity for language in a child’s non-dominant hemisphere: A pre- and post-surgery fMRI study. Brain, 125(Pt 2), 361–372 (Feb).PubMedCrossRefGoogle Scholar
  35. Hillis, A. E., & Caramazza, A. (1991). Category-specific naming and comprehension impairment: A double dissociation. Brain, 114(Pt 5), 2081–2094 (Oct).PubMedCrossRefGoogle Scholar
  36. Howard, D., Patterson, K., Wise, R., Brown, W. D., Friston, K., Weiller, C., et al. (1992). The cortical localization of the lexicons. Positron emission tomography evidence. Brain, 115(Pt 6), 1769–1782 (Dec).PubMedCrossRefGoogle Scholar
  37. Huang, J., Carr, T. H., & Cao, Y. (2002). Comparing cortical activations for silent and overt speech using event-related fMRI. Human Brain Mapping, 15(1), 39–53 (Jan).PubMedCrossRefGoogle Scholar
  38. Janszky, J., Jokeit, H., Heinemann, D., Schulz, R., Woermann, F. G., & Ebner, A. (2003). Epileptic activity influences the speech organization in medial temporal lobe epilepsy. Brain, 126(Pt 9), 2043–2051 (Sep).PubMedCrossRefGoogle Scholar
  39. Kamada, K., Takeuchi, F., Kuriki, S., Todo, T., Morita, A., & Sawamura, Y. (2006). Dissociated expressive and receptive language functions on magnetoencephalography, functional magnetic resonance imaging, and amobarbital studies. Case report and review of the literature. Journal of Neurosurgery, 104(4), 598–607 (Apr).PubMedCrossRefGoogle Scholar
  40. Kemeny, S., Ye, F. Q., Birn, R., & Braun, A. R. (2005). Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Human Brain Mapping, 24(3), 173–183 (Mar).PubMedCrossRefGoogle Scholar
  41. Kober, H., Moller, M., Nimsky, C., Vieth, J., Fahlbusch, R., & Ganslandt, O. (2001). New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Human Brain Mapping, 14(4), 236–250 (Dec).PubMedCrossRefGoogle Scholar
  42. Lancaster, J. L., Summerln, J. L., Rainey, L., Freitas, C. S., & Fox, P. T. (1997). The Talairach Daemon, a database server for Talairach atlas labels. Neuroimage, 5, S633.Google Scholar
  43. Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120–131 (Jul).PubMedCrossRefGoogle Scholar
  44. Lehericy, S., Cohen, L., Bazin, B., Samson, S., Giacomini, E., Rougetet, R., et al. (2000). Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology, 54, 1625–1633.PubMedGoogle Scholar
  45. Levy, J. (1974). Psychobiological implications of bilateral asymmetry. In Hemisphere function in the human brain. New York: Wiley.Google Scholar
  46. Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T., & Medler, D. A. (2005). Neural substrates of phonemic perception. Cerebral Cortex, 15(10), 1621–1631 (Oct).PubMedCrossRefGoogle Scholar
  47. Makris, N., Kaiser, J., Haselgrove, C., Seidman, L. J., Biederman, J., Boriel, D., et al. (2006). Human cerebral cortex: A system for the integration of volume- and surface-based representations. Neuroimage, 33(1), 139–153 (Oct 15).PubMedCrossRefGoogle Scholar
  48. Maldjian, J. A., Laurienti, P. J., & Burdette, J. H. (2004). Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage, 21(1), 450–455 (Jan).PubMedCrossRefGoogle Scholar
  49. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19(3), 1233–1239 (Jul).PubMedCrossRefGoogle Scholar
  50. Meyer, M., Zysset, S., von Cramon, D. Y., & Alter, K. (2005). Distinct fMRI responses to laughter, speech, and sounds along the human peri-sylvian cortex. Brain Research Cognitive Brain Research, 24(2), 291–306 (Jul).PubMedCrossRefGoogle Scholar
  51. Muller, R. A., Rothermel, R. D., Behen, M. E., Muzik, O., Mangner, T. J., & Chugani, H. T. (1997). Receptive and expressive language activations for sentences: A PET study. Neuroreport, 18(17), 3767–3770 (Dec).Google Scholar
  52. Nagata, S. I., Uchimura, K., Hirakawa, W., & Kuratsu, J. I. (2001). Method for quantitatively evaluating the lateralization of linguistic function using functional MR imaging. AJNR American Journal of Neuroradiology, 22(5), 985–991 (May).PubMedGoogle Scholar
  53. Nelles, J. L., Lugar, H. M., Coalson, R. S., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2003). Automated method for extracting response latencies of subject vocalizations in event-related fMRI experiments. Neuroimage, 20(3), 1865–1871 (Nov).PubMedCrossRefGoogle Scholar
  54. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113 (Mar).PubMedCrossRefGoogle Scholar
  55. Palmer, E. D., Rosen, H. J., Ojemann, J. G., Buckner, R. L., Kelley, W. M., & Petersen, S. E. (2001). An event-related fMRI study of overt and covert word stem completion. Neuroimage, 14(1 Pt 1), 182–193 (Jul).PubMedCrossRefGoogle Scholar
  56. Papanicolaou, A. C., Simos, P. G., Breier, J. I., Zouridakis, G., Willmore, L. J., Wheless, J. W., et al. (1999). Magnetoencephalographic mapping of the language-specific cortex. Journal of Neurosurgery, 90(1), 85–93 (Jan).PubMedGoogle Scholar
  57. Pataraia, E., Simos, P. G., Castillo, E. M., Billingsley-Marshall, R. L., McGregor, A. L., Breier, J. I., et al. (2004). Reorganization of language-specific cortex in patients with lesions or mesial temporal epilepsy. Neurology, 2363(10), 1825–1832 (Nov).Google Scholar
  58. Petrovich, N., Holodny, A. I., Tabar, V., Correa, D. D., Hirsch, J., Gutin, P. H., et al. (2005). Discordance between functional magnetic resonance imaging during silent speech tasks and intraoperative speech arrest. Journal of Neurosurgery, 103(2), 267–274 (Aug).PubMedCrossRefGoogle Scholar
  59. Preibisch, C., Raab, P., Neumann, K., Euler, H. A., von Gudenberg, A. W., Gall, V., et al. (2003). Event-related fMRI for the suppression of speech-associated artifacts in stuttering. Neuroimage, 19(3), 1076–1084 (Jul).PubMedCrossRefGoogle Scholar
  60. Rasmussen, T., & Milner, B. (1977). The role of early left-brain injury in determining lateralization of cerebral speech functions. Annals of the New York Academy of Sciences, 30299, 355–369 (Sep).CrossRefGoogle Scholar
  61. Ross, E. D. (1980). Left medial parietal lobe and receptive language functions: Mixed transcortical aphasia after left anterior cerebral artery infarction. Neurology, 30(2), 144–151 (Feb).PubMedGoogle Scholar
  62. Shapiro, K. A., Mottaghy, F. M., Schiller, N. O., Poeppel, T. D., Fluss, M. O., Muller, H. W., et al. (2005). Dissociating neural correlates for nouns and verbs. Neuroimage, 1524(4), 1058–1067 (Feb).CrossRefGoogle Scholar
  63. Shuster, L. I., & Lemieux, S. K. (2005). An fMRI investigation of covertly and overtly produced mono- and multisyllabic words. Brain and Language, 93(1), 20–31 (Apr).PubMedCrossRefGoogle Scholar
  64. Simos, P. G., Breier, J. I., Zouridakis, G., & Papanicolaou, A. C. (1998). Assessment of functional cerebral laterality for language using magnetoencephalography. Journal of Clinical Neurophysiology, 15(4), 364–372 (Jul).PubMedCrossRefGoogle Scholar
  65. Specht, K., & Reul, J. (2003). Functional segregation of the temporal lobes into highly differentiated subsystems for auditory perception: An auditory rapid event-related fMRI-task. Neuroimage, 20(4), 1944–1954 (Dec).PubMedCrossRefGoogle Scholar
  66. Spreer, J., Arnold, S., Quiske, A., Wohlfarth, R., Ziyeh, S., Altenmuller, D., et al. (2002). Determination of hemisphere dominance for language: Comparison of frontal and temporal fMRI activation with intracarotid amytal testing. Neuroradiology, 44(6), 467–474 (Jun).PubMedCrossRefGoogle Scholar
  67. Springer, J. A., Binder, J. R., Hammeke, T. A., Swanson, S. J., Frost, J. A., Bellgowan, P. S., et al. (1999). Language dominance in neurologically normal and epilepsy subjects: A functional MRI study. Brain, 122(Pt 11), 2033–2046 (Nov).PubMedCrossRefGoogle Scholar
  68. Szaflarski, J. P., Binder, J. R., Possing, E. T., McKiernan, K. A., Ward, B. D., & Hammeke, T. A. (2002). Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology, 2359(2), 238–244 (Jul).Google Scholar
  69. Szymanski, M. D., Rowley, H. A., & Roberts, T. P. (1999). A hemispherically asymmetrical MEG response to vowels. Neuroreport, 2010(12), 2481–2486 (Aug).CrossRefGoogle Scholar
  70. Talairach, J., & Tournoux, P. (1988). Co-planar stereotactic atlas of the human brain. Stuttgart: Thieme.Google Scholar
  71. Vikingstad, E. M., George, K. P., Johnson, A. F., & Cao, Y. (2000). Cortical language lateralization in right handed normal subjects using functional magnetic resonance imaging. Journal of the Neurological Sciences, 175(1), 17–27 (Apr 1).PubMedCrossRefGoogle Scholar
  72. Wada, J., & Rasmussen, T. (1960). Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. Journal of Neurosurgery, 17, 266–282.Google Scholar
  73. Wernicke, K. (1874). Der aphasische Symptomencomplex. Eine psychologische Studie auf anatomischer Basis. Breslau: M. Crohn und Weigert.Google Scholar
  74. Wilke, M., & Schmithorst, V. J. (2006). A combined bootstrap/histogram analysis approach for computing a lateralization index from neuroimaging data. Neuroimage, 133(2), 522–530 (Nov).CrossRefGoogle Scholar
  75. Yetkin, F. Z., Swanson, S., Fischer, M., Akansel, G., Morris, G., Mueller, W., et al. (1998). Functional MR of frontal lobe activation: Comparison with Wada language results. AJNR American Journal of Neuroradiology, 19(6), 1095–1098 (Jun–Jul).PubMedGoogle Scholar
  76. Zelkowicz, B. J., Herbster, A. N., Nebes, R. D., Mintun, M. A., & Becker, J. T. (1998). An examination of regional cerebral blood flow during object naming tasks. Journal of the International Neuropsychological Society, 4(2), 160–166 (Mar).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ralph O. Suarez
    • 1
    • 2
    • 3
  • Stephen Whalen
    • 2
  • James P. O’Shea
    • 2
  • Alexandra J. Golby
    • 1
    • 2
    • 3
  1. 1.Department of RadiologyBrigham and Women’s HospitalBostonUSA
  2. 2.Department of NeurosurgeryBrigham and Women’s HospitalBostonUSA
  3. 3.Harvard Medical SchoolBostonUSA

Personalised recommendations