Brain Imaging and Behavior

, Volume 1, Issue 3–4, pp 43–57 | Cite as

Effects of Acute Nicotine Abstinence on Cue-elicited Ventral Striatum/Nucleus Accumbens Activation in Female Cigarette Smokers: A Functional Magnetic Resonance Imaging Study

  • Sean P. David
  • Marcus R. Munafò
  • Heidi Johansen-Berg
  • James MacKillop
  • Lawrence H. Sweet
  • Ronald A. Cohen
  • Raymond Niaura
  • Robert D. Rogers
  • Paul M. Matthews
  • Robert T. Walton
Article

Abstract

To achieve greater understanding of the brain mechanisms underlying nicotine craving in female smokers, we examined the influence of nicotine non-abstinence vs. acute nicotine abstinence on cue-elicited activation of the ventral striatum. Eight female smokers underwent an event-related functional magnetic resonance imaging (fMRI) paradigm presenting randomized sequences of smoking-related and non-smoking related pictures. Participants were asked to indicate by a key press the gender of individuals in smoking-related and non-smoking related pictures (gender discrimination task), to maintain and evaluate attention to the pictures. There was a significant effect of smoking condition on reaction times (RT) for a gender discrimination task intended to assess and maintain attention to the photographs—suggesting a deprivation effect of acute nicotine abstinence and a statistical trend indicating greater RTs for smoking cues than neutral cues. BOLD contrast (smoking vs. non-smoking cues) was greater in the non-abstinent vs. acutely abstinent conditions in the ventral striatum including the nucleus accumbens (VS/NAc). Moreover, a significant positive correlation was observed between baseline cigarette craving prior to scanning and VS/NAc activation (r = 0.84, p = 0.009), but only in the non-abstinent condition. These results may either be explained by ceiling effects of nicotine withdrawal in the abstinent condition or, may indicate reduced relative activation (smoking vs. neutral contrast) in the VS/NAc in the abstinent vs. non-abstinent conditions in this group of female smokers.

Keywords

fMRI Smoking Tobacco Cue reactivity Ventral striatum Nucleus accumbens 

Notes

Acknowledgements

This research was funded by Public Health Service grant K08 DA14276 from the National Institute on Drug Abuse/National Institutes of Health, and by Cancer Research UK. Work in the Centre for Functional Neuroimaging of the Brain (FMRIB) and personal support to PMM come from the Medical Research Council. We would like to acknowledge Peter Hobden for assistance in protocol development and scanner operation.

References

  1. Balfour, D. J. (2002). Neuroplasticity within the mesoaccumbens dopamine system and its role in tobacco dependence. Current Drugs Targets. CNS and Neurological Disorders, 1(4), 413–421.CrossRefGoogle Scholar
  2. Balfour, D. J., Benwell, M. E., Birrell, C. E., Kelly, R. J., & Al-Aloul, M. (1998). Sensitization of the mesoaccumbens dopamine response to nicotine. Pharmacology, Biochemistry and Behavior, 59(4), 1021–1030.CrossRefGoogle Scholar
  3. Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in fmri. Neuroimage, 20(2), 1052–1063.PubMedCrossRefGoogle Scholar
  4. Benwell, M. E., Balfour, D. J., & Birrell, C. E. (1995). Desensitization of the nicotine-induced mesolimbic dopamine responses during constant infusion with nicotine. British Journal of Pharmacology, 114(2), 454–460.PubMedGoogle Scholar
  5. Bortolozzi, A., Duffard, R., & de Duffard, A. M. (2003). Asymmetrical development of the monoamine systems in 2,4-dichlorophenoxyacetic acid treated rats. Neurotoxicology, 24(1), 149–157.PubMedCrossRefGoogle Scholar
  6. Breiter, H. C., & Rosen, B. R. (1999). Functional magnetic resonance imaging of brain reward circuitry in the human. Annals of the New York Academy of Sciences, 877, 523–547.PubMedCrossRefGoogle Scholar
  7. Brody, A. L., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. G., et al. (2002). Brain metabolic changes during cigarette craving. Archives of General Psychiatry, 59(12), 1162–1172.PubMedCrossRefGoogle Scholar
  8. Brody, A. L., Olmstead, R. E., London, E. D., Farahi, J., Meyer, J. H., Grossman, P., et al. (2004). Smoking-induced ventral striatum dopamine release. American Journal of Psychiatry, 161(7), 1211–1218.PubMedCrossRefGoogle Scholar
  9. Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., et al. (2001). Cue dependency of nicotine self-administration and smoking. Pharmacology, Biochemistry and Behavior, 70(4), 515–530.CrossRefGoogle Scholar
  10. Carpenter, M. J., Upadhyaya, H. P., LaRowe, S. D., Saladin, M. E., & Brady, K. T. (2006). Menstrual cycle phase effects on nicotine withdrawal and cigarette craving: A review. Nicotine & Tobacco Research, 8(5), 627–638.CrossRefGoogle Scholar
  11. Carter, B. L., & Tiffany, S. T. (1999). Meta-analysis of cue-reactivity in addiction research. Addiction, 94(3), 327–340.PubMedCrossRefGoogle Scholar
  12. David, S. P., Munafò, M. R., Johansen-Berg, H., Smith, S. M., Rogers, R. D., Matthews, P. M., et al. (2005). Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: A functional magnetic resonance imaging study. Biological Psychiatry, 58(6), 488–494.PubMedCrossRefGoogle Scholar
  13. Due, D. L., Huettel, S. A., Hall, W. G., & Rubin, D. C. (2002). Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: Evidence from functional magnetic resonance imaging. American Journal of Psychiatry, 159(6), 954–960.PubMedCrossRefGoogle Scholar
  14. Duvernoy, H. (Ed.). (1999). The human brain (2nd ed.). London: Springer.Google Scholar
  15. Etter, J. F., & Hughes, J. R. (2006). A comparison of the psychometric properties of three cigarette withdrawal scales. Addiction, 101(3), 362–372.PubMedCrossRefGoogle Scholar
  16. Fudge, J. L., & Haber, S. N. (2002). Defining the caudal ventral striatum in primates: Cellular and histochemical features. Journal of Neuroscience, 22(23), 10078–10082.PubMedGoogle Scholar
  17. Garreffa, G., Bianciardi, M., Hagberg, G. E., Macaluso, E., Marciani, M. G., & Maraviglia, B., et al. (2004). Simultaneous eeg-fmri acquisition: How far is it from being a standardized technique? Magnetic Resonance Imaging, 22(10), 1445–1455.PubMedCrossRefGoogle Scholar
  18. Gilbert, D. G., & Rabinovich, N. E. (1999). International smoking images series (with neutral counterparts), (version 1.2 Carbondale). Southern Illinois University: Integrative Neuroscience Laboratory, Department of Psychology.Google Scholar
  19. Gross, T. M., Jarvik, M. E., & Rosenblatt, M. R. (1993). Nicotine abstinence produces content-specific stroop interference. Psychopharmacology (Berl), 110(3), 333–336.CrossRefGoogle Scholar
  20. Havermans, R. C., Debaere, S., Smulders, F. T., Wiers, R. W., & Jansen, A. T. (2003). Effect of cue exposure, urge to smoke, and nicotine deprivation on cognitive performance in smokers. Psychology of Addictive Behaviors, 17(4), 336–339.PubMedCrossRefGoogle Scholar
  21. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The fagerstrom test for nicotine dependence: A revision of the fagerstrom tolerance questionnaire. British Journal of Addiction, 86(9), 1119–1127.PubMedCrossRefGoogle Scholar
  22. Heiervang, E., Beherens, T. E., Mackay, C. E., Robson, M. D., & Johansen-Berg, H. (2006). Brain session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage, 33(3), 867–877.PubMedCrossRefGoogle Scholar
  23. Heinz, A., Siessmeier, T., Wrase, J., Hermann, D., Klein, S., Grusser-Sinopoli, S. M., et al. (2004). Correlation between dopamine d(2) receptors in the ventral striatum and central processing of alcohol cues and craving. American Journal of Psychiatry, 161(10), 1783–1789.PubMedCrossRefGoogle Scholar
  24. Hughes, J. R., & Hatsukami, D. (1986). Signs and symptoms of tobacco withdrawal. Archives of General Psychiatry, 43(3), 289–294.PubMedGoogle Scholar
  25. Hughes, J. R., Pickens, R. W., Gust, S. W., Hatsukami, D. K., & Svikis, D. S. (1986). Smoking behavior of type a and type b smokers. Addictive Behaviors, 11(2), 115–118.PubMedCrossRefGoogle Scholar
  26. Hutchison, K. E., Niaura, R., & Swift, R. (1999). Smoking cues decrease prepulse inhibition of the startle response and increase subjective craving in humans. Experimental and Clinical Psychopharmacology, 7(3), 250–256.PubMedCrossRefGoogle Scholar
  27. Hutchison, K. E., Niaura, R., & Swift, R. (2000). The effects of smoking high nicotine cigarettes on prepulse inhibition, startle latency, and subjective responses. Psychopharmacology (Berl), 150(3), 244–252.CrossRefGoogle Scholar
  28. Hutchison, K. E., Wooden, A., Swift, R. M., Smolen, A., McGeary, J., Adler, L., et al. (2003). Olanzapine reduces craving for alcohol: A drd4 vntr polymorphism by pharmacotherapy interaction. Neuropsychopharmacology, 28(10), 1882–1888.PubMedCrossRefGoogle Scholar
  29. ICRF. (1993). Effectiveness of a nicotine patch in helping people stop smoking: Results of a randomised trial in general practice. Imperial cancer research fund general practice research group. Builders Merchants Journal, 306(6888), 1304–1308.Google Scholar
  30. Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 9379–9384.PubMedCrossRefGoogle Scholar
  31. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.PubMedCrossRefGoogle Scholar
  32. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156.PubMedCrossRefGoogle Scholar
  33. Johansen-Berg, H., Dawes, H., Guy, C., Smith, S. M., Wade, D. T., & Matthews, P. M. (2002). Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain, 125(12), 2731–2742.PubMedCrossRefGoogle Scholar
  34. Katner, S. N., Kerr, T. M., & Weiss, F. (1996). Ethanol anticipation enhances dopamine efflux in the nucleus accumbens of alcohol-preferring (p) but not wistar rats. Behavioural Pharmacology, 7(7), 669–674.PubMedCrossRefGoogle Scholar
  35. Katner, S. N., & Weiss, F. (1999). Ethanol-associated olfactory stimuli reinstate ethanol-seeking behavior after extinction and modify extracellular dopamine levels in the nucleus accumbens. Alcoholism, Clinical and Experimental Research, 23(11), 1751–1760.PubMedGoogle Scholar
  36. Kenny, P. J., & Markou, A. (2001). Neurobiology of the nicotine withdrawal syndrome. Pharmacology, Biochemistry and Behavior, 70(4), 531–549.CrossRefGoogle Scholar
  37. Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24(2), 97–129.PubMedCrossRefGoogle Scholar
  38. Mawlawi, O., Martinez, D., Slifstein, M., Broft, A., Chatterjee, R., Hwang, D. R., et al. (2001). Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of d(2) receptor parameter measurements in ventral striatum. Journal of Cerebral Blood Flow and Metabolism, 21(9), 1034–1057.PubMedGoogle Scholar
  39. McClernon, F. J., Hiott, F. B., Huettel, S. A., & Rose, J. E. (2005). Abstinence-induced changes in self-report craving correlate with event-related fmri responses to smoking cues. Neuropsychopharmacology, 30(10), 1940–1947.PubMedCrossRefGoogle Scholar
  40. Melendez, R. I., Rodd-Henricks, Z. A., Engleman, E. A., Li, T. K., McBride, W. J., & Murphy, J. M. (2002). Microdialysis of dopamine in the nucleus accumbens of alcohol-preferring (p) rats during anticipation and operant self-administration of ethanol. Alcoholism, Clinical and Experimental Research, 26(3), 318–325.PubMedGoogle Scholar
  41. Munafò, M., Mogg, K., Roberts, S., Bradley, B. P., & Murphy, M. (2003). Selective processing of smoking-related cues in current smokers, ex-smokers and never-smokers on the modified stroop task. Journal of Psychopharmacology, 17(3), 310–316.PubMedCrossRefGoogle Scholar
  42. Niaura, R. S., Rohsenow, D. J., Binkoff, J. A., Monti, P. M., Pedraza, M., & Abrams, D. B. (1988). Relevance of cue reactivity to understanding alcohol and smoking relapse. Journal of Abnormal Psychology, 97(2), 133–152.PubMedCrossRefGoogle Scholar
  43. Niaura, R., Shadel, W. G., Abrams, D. B., Monti, P. M., Rohsenow, D. J., & Sirota, A. (1998). Individual differences in cue reactivity among smokers trying to quit: Effects of gender and cue type. Addictive Behaviors, 23(2), 209–224.PubMedCrossRefGoogle Scholar
  44. Palfai, T. P., Monti, P. M., Ostafin, B., & Hutchison, K. (2000). Effects of nicotine deprivation on alcohol-related information processing and drinking behavior. Journal of Abnormal Psychology, 109(1), 96–105.PubMedCrossRefGoogle Scholar
  45. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18(3), 247–291.PubMedCrossRefGoogle Scholar
  46. Robinson, T. E., & Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction, 95(Suppl 2), S91–S117.PubMedCrossRefGoogle Scholar
  47. Rohsenow, D. J., Niaura, R. S., Childress, A. R., Abrams, D. B., & Monti, P. M. (1990). Cue reactivity in addictive behaviors: Theoretical and treatment implications. International Journal of the Addictions, 25(7A–8A), 957–993.PubMedGoogle Scholar
  48. Rose, J. E., Behm, F. M., Westman, E. C., Bates, J. E., & Salley, A. (2003). Pharmacologic and sensorimotor components of satiation in cigarette smoking. Pharmacology, Biochemistry and Behavior, 76(2), 243–250.CrossRefGoogle Scholar
  49. Rose, J. E., Behm, F. M., Westman, E. C., & Johnson, M. (2000). Dissociating nicotine and nonnicotine components of cigarette smoking. Pharmacology, Biochemistry and Behavior, 67(1), 71–81.CrossRefGoogle Scholar
  50. Schneider, L. H., Murphy, R. B., & Coons, E. E. (1982). Lateralization of striatal dopamine (d2) receptors in normal rats. Neuroscience Letters, 33(3), 281–284.PubMedCrossRefGoogle Scholar
  51. Shiffman, S., Kheryallah, M., Niaura, R., Shadel, W. G., Jorenby, D., Ryan, C., et al. (1998). Efficacy of acute administration of nicorette gum against cue-provoked craving. Fourth annual scientific conference of the society for research on nicotine and tobacco, new orleans, la., society for research on nicotine and tobacco. Paper presented at the Fourth Annual Scientific Conference of the Society for Research on Nicotine and Tobacco, New Orleans, LA.Google Scholar
  52. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.PubMedCrossRefGoogle Scholar
  53. Smolka, M. N., Buhler, M., Klein, S., Zimmermann, U.,Mann, K., Heinz, A., et al. (2006). Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery. Psychopharmacology (Berl), 184(3–4), 577–588.CrossRefGoogle Scholar
  54. Stein, E. A., Pankiewicz, J., Harsch, H. H., Cho, J. K., Fuller, S. A., Hoffmann, R. G., et al. (1998). Nicotine-induced limbic cortical activation in the human brain: A functional mri study. American Journal of Psychiatry, 155(8), 1009–1015.PubMedGoogle Scholar
  55. Stewart, J. (1983). Conditioned and unconditioned drug effects in relapse to opiate and stimulant drug self-adminstration. Progress in Neuropsychopharmacology and Biological Psychiatry, 7(4–6), 591–597.CrossRefGoogle Scholar
  56. Stewart, J. (1984). Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area. Pharmacology, Biochemistry and Behavior, 20(6), 917–923.CrossRefGoogle Scholar
  57. Stewart, J., de Wit, H., & Eikelboom, R. (1984). Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychological Review, 91(2), 251–268.PubMedCrossRefGoogle Scholar
  58. Teneggi, V., Tiffany, S. T., Squassante, L., Milleri, S., Ziviani, L., & Bye, A. (2002). Smokers deprived of cigarettes for 72 h: Effect of nicotine patches on craving and withdrawal. Psychopharmacology (Berl), 164(2), 177–187.CrossRefGoogle Scholar
  59. Teneggi, V., Tiffany, S. T., Squassante, L., Milleri, S., Ziviani, L., & Bye, A. (2005). Effect of sustained-release (sr) bupropion on craving and withdrawal in smokers deprived of cigarettes for 72 h. Psychopharmacology (Berl), 183(1), 1–12.CrossRefGoogle Scholar
  60. Tidey, J. W., Rohsenow, D. J., Kaplan, G. B., & Swift, R. M. (2005). Subjective and physiological responses to smoking cues in smokers with schizophrenia. Nicotine & Tobacco Research, 7(3), 421–429.CrossRefGoogle Scholar
  61. Tiffany, S. T., & Drobes, D. J. (1991). The development and initial validation of a questionnaire on smoking urges. British Journal of Addiction, 86(11), 1467–1476.PubMedCrossRefGoogle Scholar
  62. Trimmel, M., & Wittberger, S. (2004). Effects of transdermally administered nicotine on aspects of attention, task load, and mood in women and mean. Pharmacology, Biochemistry and Behavior, 78(3), 639–645.CrossRefGoogle Scholar
  63. Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: Insights from imaging studies. Journal of Clinical Investigation, 111(10), 1444–1451.PubMedCrossRefGoogle Scholar
  64. Warfield, S. K., Zou, K. H., & Wells, W. M. (2004). Simultaneous truth and performance level estimation (staple): An algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging, 23(7), 903–921.PubMedCrossRefGoogle Scholar
  65. Waters, A. J., & Feyerabend, C. (2000). Determinants and effects of attentional bias in smokers. Psychology of Addictive Behaviors, 14(2), 111–120.PubMedCrossRefGoogle Scholar
  66. Waters, A. J., Shiffman, S., Sayette, M. A., Paty, J. A., Gwaltney, C. J., & Balabanis, M. H. (2004). Cue-provoked craving and nicotine replacement therapy in smoking cessation. Journal of Consulting and Clinical Psychology, 72(6), 1136–1143.PubMedCrossRefGoogle Scholar
  67. Weiss, F., Lorang, M. T., Bloom, F. E., & Koob, G. F. (1993). Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: Genetic and motivational determinants. Journal of Pharmacology and Experimental Therapeutics, 267(1), 250–258.PubMedGoogle Scholar
  68. Willner, P., Hardman, S., & Eaton, G. (1995). Subjective and behavioural evaluation of cigarette cravings. Psychopharmacology (Berl), 118(2), 171–177.CrossRefGoogle Scholar
  69. Wilson, S. J., Sayette, M. A., Delgado, M. R., & Fiez, J. A. (2005). Instructed smoking expectancy modulates cue-elicited neural activity: A preliminary study. Nicotine & Tobacco Research, 7(4), 637–645.CrossRefGoogle Scholar
  70. Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for fmri group analysis using bayesian inference. Neuroimage, 21(4), 1732–1747.PubMedCrossRefGoogle Scholar
  71. Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of fmri data. Neuroimage, 14(6), 1370–1386.PubMedCrossRefGoogle Scholar
  72. Worsley, K. J., Evans, A. C., Marrett, S., & Neelin, P. (1992). A three-dimensional statistical analysis for cbf activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism, 12(6), 900–918.PubMedGoogle Scholar
  73. Yudkin, P., Munafo, M., Hey, K., Roberts, S., Welch, S., Johnstone, E., et al. (2004). Effectiveness of nicotine patches in relation to genotype in women versus men: Randomised controlled trial. Builders Merchants Journal, 328(7446), 989–990.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sean P. David
    • 1
    • 2
  • Marcus R. Munafò
    • 3
  • Heidi Johansen-Berg
    • 4
  • James MacKillop
    • 5
  • Lawrence H. Sweet
    • 6
  • Ronald A. Cohen
    • 6
  • Raymond Niaura
    • 7
  • Robert D. Rogers
    • 8
  • Paul M. Matthews
    • 9
  • Robert T. Walton
    • 10
  1. 1.Department of Clinical PharmacologyUniversity of Oxford, Radcliffe InfirmaryOxfordUK
  2. 2.Center for Primary Care & PreventionThe Warren Alpert Medical School of Brown UniversityPawtucketUSA
  3. 3.Department of Experimental PsychologyUniversity of BristolBristolUK
  4. 4.Department of Clinical Neurology, John Radcliffe HospitalThe University of OxfordOxfordUK
  5. 5.Center for Alcohol and Addiction StudiesThe Warren Alpert Medical School of Brown UniversityPawtucketUSA
  6. 6.Centers for Behavioral and Preventive MedicineThe Warren Alpert Medical School of Brown UniversityPawtucketUSA
  7. 7.Department of Psychiatry & Human BehaviorThe Warren Alpert Medical School of Brown UniversityPawtucketUSA
  8. 8.Department of PsychiatryUniversity of OxfordOxfordUK
  9. 9.GlaxoSmithKline Clinical Imaging CentreLondonUK
  10. 10.Medical Research Council LaboratoriesFajaraThe Gambia

Personalised recommendations