The effects of temperature and host size on the development of Brachymeria lasus parasitising Hyphantria cunea

  • Shuo Tian
  • Tianzi Gu
  • Cong Chen
  • Xudong Zhao
  • Pengcheng Liu
  • Dejun HaoEmail author
Original Paper


Brachymeria lasus Walker is a solitary endoparasitoid that attacks the pupae of a wide range of lepidopteran hosts, including an important invasive species, the fall webworm (Hyphantria cunea Drury). We studied the relationship between temperature and development of B. lasus from egg to adult hatching. The results show a decrease in parasitoid development time from 34.4 days at 18 °C to 10.6 days at 32 °C. The minimum threshold temperature of B. lasus was 13.2 °C ± 1.7 °C, and the effective accumulated temperature was 210.3 ± 28.7 degree days. These results provide a basis for optimizing the production of this parasitoid. In addition, the effects of host size on offspring performance of B. lasus were investigated under laboratory conditions. Offspring longevity, size, and percentage of females were positively correlated with host size. Female offspring are larger and live longer than males. Furthermore, this research showed that parasitoid adults successfully emerged from approximately 27.9% of pupae. However, eclosion or hatching of H. cunea decreased dramatically, which may be due to damage caused by female B. lasus when testing hosts with their ovipositors or by feeding on them. The results suggest that B. lasus has the potential to become an efficient natural enemy for controlling H. cunea.


Hyphantria cunea Brachymeria lasus Parasitoid Temperature Development Fitness 



Thanks go to Professor Liangjian Qu of the Chinese Academy of Forestry and Tongbin Guo of the Xuzhou Forest Protection Station for their valuable help.

Supplementary material

11676_2020_1099_MOESM1_ESM.docx (13 kb)
Supplementary file1 (DOCX 13 kb)


  1. Atkinson D (1994) Temperature and organism size: a biological law for ectotherms. Adv Ecol Res 25(6):1–58Google Scholar
  2. Cao LJ, Yang F, Tang SY, Chen M (2014) Development of an artificial diet for three lepidopteran insects. Chin J Appl Entomol 51(5):1376–1386Google Scholar
  3. Charnov EL, Skinner SW (1984) Evolution of host selection and clutch size in parasitoid wasps. Fla Entomol 67(1):5–21CrossRefGoogle Scholar
  4. Deng Y, Li F, Rieske LK, Sun LL, Sun SH (2018) Transcriptome sequencing for identification of diapause-associated genes in fall webworm, Hyphantria cunea Drury. Gene 668:229–236PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ding YQ (1994) Mathematical ecology of insects. Beijing Science Press, Beijing, pp 319–331Google Scholar
  6. Golizadeh A, Kamali K, Fathipour Y, Abbasipour H (2009) Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. J Asia Pac Entomol 12(4):207–212CrossRefGoogle Scholar
  7. Goubault M, Fourrier J, Krespi L, Poinsot D, Cortesero AM (2004) Selection strategies of parasitized hosts in a generalist parasitoid depend on patch quality but also on host size. J Insect Behav 17(1):99–113CrossRefGoogle Scholar
  8. Hagstrum DW, Milliken GA (1988) Quantitative analysis of temperature, moisture, and diet factors affecting insect development. Ann Entomol Soc Am 81(4):539–546CrossRefGoogle Scholar
  9. Heimpel GE, Lundgren JG (2000) Sex ratios of commercially reared biological control agents. Biol Control 19(1):77–93CrossRefGoogle Scholar
  10. Henter HJ (2004) Constrained sex allocation in a parasitoid due to variation in male quality. J Evol Biol 17(4):886–896PubMedCrossRefPubMedCentralGoogle Scholar
  11. Holdaway FG, Smith HF (1935) A relation between size of host puparia and sex ratio of Alysia manducator Pantzer. Aust J Exp Biol Med Sci 10(4):247–257CrossRefGoogle Scholar
  12. Itô Y, Miyashita K (1968) Biology of Hyphantria cunea Drury (Lepidoptera: Arctiidae) in Japan. V. Preliminary life tables and mortality data in urban areas. Res Popul Ecol 10(2):177–209CrossRefGoogle Scholar
  13. Ji R, Xie BY, Li XH, Gao ZX, Li DM (2003) Research progress on the invasive species, Hyphantria cunea. Chin Bull Entomol 1:13–18Google Scholar
  14. Keena MA, Moore PM (2010) Effects of temperature on Anoplophora glabripennis (Coleoptera: Cerambycidae) larvae and pupae. Environ Entomol 39(4):1323–1335PubMedCrossRefPubMedCentralGoogle Scholar
  15. King BH, Hurlbutt B (1987) Offspring sex ratios in parasitoid wasps. Q Rev Biol 62(4):367–396CrossRefGoogle Scholar
  16. Li SJ, Wang X, Zhou ZS, Zhu J, Hu J, Zhao YP, Huang GH (2013) A comparison of growth and development of three major agricultural insect pests infected with Heliothis virescens ascovirus 3h (HvAV-3h). PLoS ONE 8(12):e85704PubMedPubMedCentralCrossRefGoogle Scholar
  17. Liu YH, Li BP (2006) Host stage selection for Spodoptera exigua larvae and the effect on developmental parameters of solitary endoparasitoid in Meteorus pulchricornis (Hymenoptera: Braconidae). J Nanjing Agric Univ 29:66–70Google Scholar
  18. Liu ZD, Xu BB, Li L, Sun JH (2011) Host-size mediated trade-off in a parasitoid Scleroderma sharmandi. PLoS ONE 6(8):e23260PubMedPubMedCentralCrossRefGoogle Scholar
  19. Liu PC, Men J, Zhao B, Wei JR (2017) Fitness-related offspring sex allocation of Anastatus disparis, a gypsy moth egg parasitoid, on different-sized host species. Entomol Exp Appl 163(3):281–286CrossRefGoogle Scholar
  20. Luo LP, Wang XY, Yang ZQ, Cao LM (2018) Research progress in the management of fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae). J Environ Entomol 40(4):721–735Google Scholar
  21. Mao HX, Kunimi Y (1991) Pupal mortality of the oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae), caused by parasitoids and pathogens. Jpn J Appl Entomol Zool 35(3):241–245CrossRefGoogle Scholar
  22. Mao HX, Kunimi Y (1994) Effects of temperature on the development and parasitism of Brachymeria lasus, a pupal parasitoid of Homona magnanima. Entomol Exp Appl 71(1):87–90CrossRefGoogle Scholar
  23. Napoleon ME, King BH (1999) Offspring sex ratio response to host size in the parasitoid wasp Spalangia endius. Behav Ecol Sociobiol 46(5):325–332CrossRefGoogle Scholar
  24. Pilkington LJ, Hoddle MS (2006) Use of life table statistics and degree-day values to predict the invasion success of Gonatocerus ashmeadi (Hymenoptera: Mymaridae), an egg parasitoid of Homalodisca coagulata (Hemiptera: Cicadellidae), in California. Biol Control 37(3):276–283CrossRefGoogle Scholar
  25. Pilkington LJ, Lewis M, Jeske D, Hoddle MS (2014) Calculation and thematic mapping of demographic parameters for Homalodisca vitripennis (Hemiptera: Cicadellidae) in California. Ann Entomol Soc Am 107(2):424–434CrossRefGoogle Scholar
  26. Qiu B, Zhou ZS, Luo SP, Xu ZF (2012) Effect of temperature on development, survival, and fecundity of Microplitis manilae (Hymenoptera: Braconidae). Environ Entomol 41(3):657–664PubMedCrossRefPubMedCentralGoogle Scholar
  27. Quicke DLJ (1997) Parasitic wasps. Chapman Hall, London, p 470Google Scholar
  28. Simser DH, Coppel HC (1980) Courtship and mating behavior of Brachymeria lasus (Hymenoptera: Chalcididae), an imported gypsy moth parasitoid. Entomophaga 25(4):349–355CrossRefGoogle Scholar
  29. Torqueti RMA, Fagundes PF, Oliveira KS, Luiz PP, Fabiana GD, De OHN (2013) Thermal requirements and generation estimates of Trichospilus diatraeae (Hymenoptera: Eulophidae) in sugarcane producing regions of Brazil. Fla Entomol 96(1):154–159CrossRefGoogle Scholar
  30. Traynor RE, Mayhew PJ (2005) A comparative study of body size and clutch size across the parasitoid Hymenoptera. Oikos 109:305–316CrossRefGoogle Scholar
  31. Ueno T (1998) Adaptiveness of sex ratio control by the pupal parasitoid Itoplectis naranyae (Hymenoptera: Ichneumonidae) in response to host size. Evol Ecol 12(6):643–654CrossRefGoogle Scholar
  32. Ueno T (1999) Host-size-dependent sex ratio in a parasitoid wasp. Res Popul Ecol 41:47–57CrossRefGoogle Scholar
  33. Ueno T (2015) Effects of host size and laboratory rearing on offspring development and sex ratio in the solitary parasitoid Agrothereutes lanceolatus (Hymenoptera: Ichneumonidae). Eur J Entomol 112(2):281–287CrossRefGoogle Scholar
  34. Vinson SB (1985) The behavior of parasitoids. In: Kerkut FA (ed) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, New York, pp 417–469Google Scholar
  35. Wang XG, Messing RH (2004) Fitness consequences of body-size-dependent host species selection in a generalist ectoparasitoid. Behav Ecol Sociobiol 56(6):513–522CrossRefGoogle Scholar
  36. Wang XG, Liu SS, Guo SJ, Lin W (1999) Effects of host stages and temperatures on population parameters of Oomyzus sokolowskii, a larval-pupal parasitoid of Plutella xylostyella. Biocontrol 44:391–403CrossRefGoogle Scholar
  37. Weseloh RM, Anderson JF (1982) Releases of Brachymeria lasus and Coccygomimus disparis, two exotic gypsy moth parasitoids, in Connecticut: habitat preference and overwintering potential. Ann Entomol Soc Am 75(1):46–50CrossRefGoogle Scholar
  38. West SA, Sheldon BC (2002) Constraints in the evolution of sex ratio adjustment. Science 295(5560):1685–1688PubMedCrossRefPubMedCentralGoogle Scholar
  39. Wu HW, Kang Z, Xin SL, Qin XB, Zhang QM, Liu HX (2012) Effects of different food plants on the growth, development and reproduction of fall webworm, Hyphantria cunea, larvae. Chin J Appl Entomol 49(4):963–968Google Scholar
  40. Xu M, Xu FY, Wu XQ (2017) Differentially expressed proteins from the peritrophic membrane related to the lethal, synergistic mechanisms observed in Hyphantria cunea larvae treated with a mixture of Bt and chlorbenzuron. J Insect Sci 17(2):1–8CrossRefGoogle Scholar
  41. Yan JJ, Xu CH, Li GW, Zhang PY, Gao WC, Yao DF, Li YM (1989) Natural enemy insect of forest insect. Forestry Publishing Press, Beijing, pp 113–114Google Scholar
  42. Yang XQ, Wei JR, Yang ZQ (2001) A survey on insect natural enemies of Hyphantria cunea in Dalian district, Liaoning Province. Chin J Biol Control 17(1):40–42Google Scholar
  43. Yang ZQ, Wei J, Wang XY (2006) Mass rearing and augmentative releases of the native parasitoid Chouioia cunea for biological control of the introduced fall webworm Hyphantria cunea in China. BioControl J Int Organ Biol Control 51(4):401–418Google Scholar
  44. Yu QQ, Liu ZK, Chen C, Wen J (2013) Antennal sensilla of Eucryptorrhynchus chinensis (Olivier) and Eucryptorrhynchus brandti, (Harold) (Coleoptera: Curculionidae). Microsc Res Tech 76(9):968–978PubMedCrossRefPubMedCentralGoogle Scholar
  45. Zhao TZ, Gao L, Ke SF, Wen YL (2007) Establishment on the loss evaluation index system of Hyphantria cunea Drury's invading China. J Beijing For Univ 2:156–160Google Scholar

Copyright information

© Northeast Forestry University 2020

Authors and Affiliations

  • Shuo Tian
    • 1
    • 2
  • Tianzi Gu
    • 1
    • 2
  • Cong Chen
    • 1
    • 2
  • Xudong Zhao
    • 1
    • 2
  • Pengcheng Liu
    • 1
    • 2
  • Dejun Hao
    • 1
    • 2
    Email author
  1. 1.Co-Innovation Center for the Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.College of ForestryNanjing Forestry UniversityNanjingPeople’s Republic of China

Personalised recommendations