Analysis of symbiotic microbial status of Atlantic sand dunes forest and its effects on Acacia gummifera and Retama monosperma (Fabaceae) to be used in reforestation

  • Abdessamad Fakhech
  • Lahcen Ouahmane
  • Mohamed HafidiEmail author
Original Paper


Atlantic forest natural soil flora was tested on two leguminous pioneer species Acacia gummifera and Retama monosperma to be used in rehabilitation programs of the coastal sand dunes forest of the Essaouira region. The rhizospheric soil of two endemic plant species: R. monosperma and Juniperus phoenicea was sampled and split into two categories, one from native rhizospheric soil, the other of the sterilized rhizospheric soil. Investigation was focused on mycorrhizal formations, but other forms of beneficial symbiosis such as rhizobia and viable soil microflora were also studied. Growth and nutrition variables assessed included lengths of roots and shoots, number of branches, ratio of root to shoot dry mass and water, nitrogen and phosphorus levels. Results showed important mycorrhizal associations in roots of both plants, presence of nodules and abundance of viable soil microflora. J. phoenicea had a 100% frequency of mycorrhizal formation and an intensity of 80% compared to a frequency of 80% and intensity of 54% for R. monosperma. Nodules had the same density of CFU regardless of the origin. Abundance of viable microflora in rhisospheric soil of R. monosperma, J. phoenicea and the control differed significantly. Among the studied variables for A. gummifera and R. monosperma, nitrogen and phosphorus uptakes significantly wit the use of the nonsterilized rhizospheric soil. Both species doubled their phosphorus uptake when colonized by mycorrhizal species, R. monosperma doubled its nitrogen uptake and A. gummifera increased it by seven times compared with the control. No significant difference was noted for the other variables.


Nitrogen Phosphorus Juniperus phoenicea Acacia gummifera Retama monosperma Mycorrhizae Rhizobia 



  1. Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems. New Phytol 111:435–446. CrossRefGoogle Scholar
  2. Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:61CrossRefGoogle Scholar
  3. Bacon CW, Hinton DM (1996) Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot 74:1195–1202. CrossRefGoogle Scholar
  4. Blaszkowski J (2003) Arbuscular mycorrhizal fungi (Glomeromycota), Endogone and Complexipes species deposited in the Department of Plant Pathology, University of Agriculture Szczecin, Poland. Accessed 19 Mar 2019
  5. Błaszkowski J, Czerniawska B (2011) Arbuscular mycorrhizal fungi (Glomeromycota) associated with roots of Ammophila arenaria growing in maritime dunes of Bornholm (Denmark). Acta Soc Bot Pol 80:63–76CrossRefGoogle Scholar
  6. CHM Clearing House Mechanisms on Biodiversity of Morocco (2006) Dunes d’Essaouira (L25). Accessed 19 Mar 2019
  7. Duponnois R, Colombet A, Hien V, Thioulouse J (2005) The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biol Biochem 37:1460–1468. CrossRefGoogle Scholar
  8. Egli H (2008) Kjeldahl guide. First edit. AG, CH-9230. Flawil,URL: Accessed 3 June 2017, ISBN: 978-3-033-03100-5. Flawil Switzerland: Büchi Labortechnik, p 159
  9. Fisher RA, Yates F (1939) Statistical tables for biological, agricultural and medical research. Eugen Rev 30:66Google Scholar
  10. Foght J, Aislabie J (2005) Enumeration of soil microorganisms BT—monitoring and assessing soil bioremediation. In: Margesin R, Schinner F (eds) Monitoring and assessing soil bioremediation. Springer, Berlin, pp 261–280CrossRefGoogle Scholar
  11. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244. CrossRefGoogle Scholar
  12. Giovannetti M, Nicolson TH (1983) Vesicular-arbuscular mycorrhizas in Italian sand dunes. Trans Br Mycol Soc 80:552–557. CrossRefGoogle Scholar
  13. Jacobs DF, Oliet JA, Aronson J et al (2015) Restoring forests: What constitutes success in the twenty-first century? New For 46:601–614. CrossRefGoogle Scholar
  14. Jin H, Pfeffer PE, Douds DD et al (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696. CrossRefGoogle Scholar
  15. Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757. CrossRefGoogle Scholar
  16. Kachi N, Hirose T (1983) Limiting nutrients for plant growth in coastal sand dune soils. J Ecol 71:937–944CrossRefGoogle Scholar
  17. Khbaya B, Neyra M, Normand P et al (1998) Genetic diversity and phylogeny of rhizobia that nodulate acacia spp. in Morocco Assessed by analysis of rRNA genes. Appl Environ Microbiol 64:4912–4917Google Scholar
  18. Kiers ET, Lovelock CE, Krueger EL, Herre EA (2000) Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecol Lett 3:106–113CrossRefGoogle Scholar
  19. Koide RT, Li M (1990) On host regulation of the vesicular—arbuscular mycorrhizal symbiosis. New Phytol 114:59–74. CrossRefGoogle Scholar
  20. Koske RE, Poison WR (2011) Are VA mycorrhizae required for sand dune stabilization? Bioscience 34:420–424CrossRefGoogle Scholar
  21. Koske RE, Gemma JN, Corkidi L, Sigüenza C, Rincón E (2004) Arbuscular mycorrhizas in coastal dunes. In: Martínez ML, Psuty N (eds) Coastal dunes SE-11. Springer, Berlin, pp 173–187Google Scholar
  22. Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320CrossRefGoogle Scholar
  23. Morton J (2017) International culture collection of (Vesicular) arbuscular mycorrhizal fungi,. Accessed 19 Mar 2019
  24. Nicolson TH (1960) Mycorrhiza in the Gramineae. Trans Br Mycol Soc 43:132-IN10CrossRefGoogle Scholar
  25. HKO Hong Kong Observatory (2012) Climatological Information for Essaouira, Morocco. Accessed 19 Mar 2019
  26. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Department of Agriculture, USDA Circ, Washington, DC, p 24Google Scholar
  27. Ouahmane L, Hafidi M, Thioulouse J (2007) Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi. J Appl Microbiol 103:683–690CrossRefGoogle Scholar
  28. Ouahmane L, Ibrahima N, Abdessadek M, Abderrahim F (2012) Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. Afr J Biotechnol 11:16422–16426Google Scholar
  29. Pansu M, Gautheyrou J (2007) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Berlin, p 995. ISBN 978-3-540-31211-6Google Scholar
  30. Pasqualini D, Uhlmann A, Stürmer SL (2007) Arbuscular mycorrhizal fungal communities influence growth and phosphorus concentration of woody plants species from the Atlantic rain forest in South Brazil. For Ecol Manag 245:148–155. CrossRefGoogle Scholar
  31. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158-IN18. CrossRefGoogle Scholar
  32. Porter WM (1979) The most probable number method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res 17:515–518CrossRefGoogle Scholar
  33. Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, New York, pp 299–349CrossRefGoogle Scholar
  34. Richter BS, Stutz JC (2002) Mycorrhizal inoculation of big sacaton: implications for grassland restoration of abandoned agricultural fields. Restor Ecol 10:607–616. CrossRefGoogle Scholar
  35. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53. CrossRefGoogle Scholar
  36. Schachtman DP, Reid RJ, Ayling SM et al (1998) Update on phosphorus uptake phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453. CrossRefGoogle Scholar
  37. Sfairi Y, Ouahmane L, Abbad A (2012) Breaking seed dormancy in Cupressus atlantica Gaussen, an endemic and threatened coniferous tree in Morocco. J For Res 23:385–390. CrossRefGoogle Scholar
  38. Sieber T, Grünig C (2006) Biodiversity of fungal root-endophyte communities and populations, in particular of the dark septate endophyte Phialocephala fortinii s. l. In: Schulz BE, Boyle CC, Sieber T (eds) Microbial root endophytes SE-7. Springer, Berlin, pp 107–132CrossRefGoogle Scholar
  39. Smith TF (1980) The effect of season and crop rotation on the abundance of spores of vesicular-arbuscular (V-A) mycorrhizal endophytes. Plant Soil 57:475–479. CrossRefGoogle Scholar
  40. Somasegaran P, Hoben HJ (2012) Handbook for rhizobia: methods in legume-Rhizobium technology. Springer, BerlinGoogle Scholar
  41. St-Denis A, Kneeshaw D, Bélanger N (2017) Species-specific responses to forest soil inoculum in planted trees in an abandoned agricultural field. Appl Soil Ecol 112:1–10. CrossRefGoogle Scholar
  42. Su Y-Y, Sun X, Guo L-D (2011) Seasonality and host preference of arbuscular mycorrhizal fungi of five plant species in the Inner Mongolia steppe, china. Braz J Microbiol 42:57–65. CrossRefGoogle Scholar
  43. Sylvia DM, Will ME (1988) Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida. Appl Environ Microbiol 54:348–352Google Scholar
  44. Trouvelot A, Kough JL, Gianinazzi-Pearson VG (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification functionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspects of mycorrhizae. INRA Press, Paris, pp 217–221Google Scholar
  45. Vallés SM, Fernández JBG, Dellafiore C, Cambrollé J (2011) Effects on soil, microclimate and vegetation of the native-invasive Retama monosperma (L.) in coastal dunes. Plant Ecol 212:169–179CrossRefGoogle Scholar
  46. Van Der Heijden MGA, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  47. Vincent JM (1970) A manual for practical study of root nodule bacteria. IBP Handbook No. 15. Oxford Blackwell Scientific Publishers, Oxford, p 164Google Scholar
  48. Walker C, Mize CW, McNabb HS (1982) Populations of endogonaceous fungi at two locations in central Iowa. Can J Bot 60:2518–2529. CrossRefGoogle Scholar
  49. Williams A, Ridgway HJ, Norton DA (2011) Growth and competitiveness of the New Zealand tree species Podocarpus cunninghamii is reduced by ex-agricultural AMF but enhanced by forest AMF. Soil Biol Biochem 43:339–345. CrossRefGoogle Scholar
  50. Zangaro W, Bononi VLR, Trufen SB (2000) Mycorrhizal dependency, inoculum potential and habitat preference of native woody species in South Brazil. J Trop Ecol 16:603–621CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  • Abdessamad Fakhech
    • 1
  • Lahcen Ouahmane
    • 1
  • Mohamed Hafidi
    • 1
    • 2
    Email author
  1. 1.Laboratoire Ecologie et Environnement (Unité Associée au CNRST, URAC 32), Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakeshMorocco
  2. 2.Agrobiosciences ProgramUniversity Mohammed VI Polytechnic (UM6P)BenguerirMorocco

Personalised recommendations