Advertisement

An experimental study exploring the influencing factors for ultrasonic-assisted extraction of flavonoid compounds from leaves of Amorpha fruticosa L.

  • Jingyao Tian
  • Siddique Muhammad
  • Ai Chen
  • Peng Chen
  • Jinghong WangEmail author
  • Chengwu Yang
  • Hui Yuan
  • Zhensheng Wang
Original Paper
  • 7 Downloads

Abstract

In this paper, the ultrasonic-assisted extraction process of flavonoid compounds from leaves of Amorpha fruticosa is optimized. In single factor experiments, solid/liquid ratios, ultrasonic power, ethanol concentrations and extraction cycles were experimental factors. Box–Behnken central composite design and RSM analyzed the effects of the four factors on the yield of total flavonoids. The optimal extraction parameters were solid/liquid ratio 1:50 g/mL, ultrasonic power 316 W, ethanol concentration 50%, 4 extraction cycles. In the optimized condition, the estimated value of the regression model was 66.6456 mg/g while the measured value was 66.4329 mg/g.

Keywords

Amorpha fruticosa L. Flavonoid compounds Ultrasonic extraction Response surface methodology 

Notes

References

  1. Azimova SS, Glushenkova AI, Vinogradova VI (2012) Lipids, lipophilic components and essential oils from plant sources. Springer, BerlinCrossRefGoogle Scholar
  2. Balentine DA, Wiseman SA, Bouwens LCM (1998) Chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37(8):693–704CrossRefGoogle Scholar
  3. Bashi DS, Rezaei K, Rajaei A, Karimkhani MM (2012) Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea beibrestinii) by response surface methodology. Food Sci Biotechnol 21(4):1005–1011CrossRefGoogle Scholar
  4. Cui DL, Yu-Xin MA, Shi G, Fan MH, Wei DU, Zhang M (2010) Ecophysiological responses of Amorpha fruticosa L. seeding leaves to long-term drought gradient treatment. Res Soil Water Conserv 17(2):167–178Google Scholar
  5. Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM (2015) Molecular mechanisms underlying anticancer effects of myricetin. Life Sci 142:19–25CrossRefGoogle Scholar
  6. Feng J, Chen X, Wang Y, Du Y, Sun Q, Zang W (2015) Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Mol Cell Biochem 408(1–2):163–170CrossRefGoogle Scholar
  7. Hou W, Zhang W, Chen G, Luo Y (2016) Optimization of extraction conditions for maximal phenolic, flavonoid and antioxidant activity from Melaleuca bracteata leaves using the response surface methodology. PLoS One 11(9):139CrossRefGoogle Scholar
  8. Hui T, Yong HC (2014) Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis using response surface methodology. Food Chem 142(1):299–305Google Scholar
  9. Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559CrossRefGoogle Scholar
  10. Jiang B, Le L, Pan H, Hu K, Xu L, Xiao P (2014) Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells. Brain Res Bull 109:117–126CrossRefGoogle Scholar
  11. Kang S, Zhang L, Song X, Zhang S, Liu X, Liang Y (2001) Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the loess plateau of china. Hydrol Process 15(6):977–988CrossRefGoogle Scholar
  12. Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18(2):2328–2375CrossRefGoogle Scholar
  13. Liu J, Shu Y, Zhang Q, Liu B, Xia J, Qiu M (2014) Dihydromyricetin induces apoptosis and inhibits proliferation in hepatocellular carcinoma cells. Oncol Lett 8(4):1645CrossRefGoogle Scholar
  14. Morelli LL, Prado MA (2012) Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology. Ultrason Sonochem 19(6):1144–1149CrossRefGoogle Scholar
  15. Muñiz Márquez DB, Martínez Ávila GC, Wong Paz JE, Belmares Cerda R, Rodríguez Herrera R, Aguilar CN (2013) Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason Sonochem 20(5):1149–1154CrossRefGoogle Scholar
  16. Qi S, Xin Y, Guo Y, Diao Y, Kou X, Luo L, Yin Z (2012) Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways. Int Immunopharmacol 12(1):278–287CrossRefGoogle Scholar
  17. Ramić M, Vidović S, Zeković Z, Vladić J, Cvejin A, Pavlić B (2015) Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by products from filter-tea factory. Ultrason Sonochem 23:360–368CrossRefGoogle Scholar
  18. Rodrigues S, Pinto GA, Fernandes FA (2008) Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrason Sonochem 15(1):95–100CrossRefGoogle Scholar
  19. Salar BD, Attaran DS, Fazly BBS, Farhad K, Vahid S, Ali M (2016) Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L. Iran J Basic Med Sci 19(5):529–541Google Scholar
  20. Shi L, Zhang T, Liang X (2015) Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway. Mol Cell Endocrinol 409:92–102CrossRefGoogle Scholar
  21. Wang X, Wu Y, Chen G, Yue W, Liang Q, Wu Q (2013) Optimisation of ultrasound assisted extraction of phenolic compounds from sparganii rhizoma with response surface methodology. Ultrason Sonochem 20(3):846–854CrossRefGoogle Scholar
  22. Wu Y, Wu B, Wan J, Zhang Y, Zhu JD, Zhou Y, Mi MT (2015) Rattan tea extracts improve insulin resistance in type 2 diabetes rats. J Third Mil Med Univ 37:454–458Google Scholar
  23. Xiang CG, Xiang N, Huang CL, Sun HB, Wen Fang LI (2011) Optimization of Microwave extraction of flavonoids from Robinia pseudoacacia L. flowers using response surface methodology. Food Sci 32(22):32–36Google Scholar
  24. Xu W, Chu K, Li H, Zhang Y, Zheng H, Chen R, Chen L (2012) Ionic liquid based microwave-assisted extraction of flavonoids from Bauhinia championii Benth. Molecules 17(12):14323–14335CrossRefGoogle Scholar
  25. Ye L, Wang H, Duncan SE, Eigel WN, Okeefe SF (2015) Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef. Food Chem 172:416–422CrossRefGoogle Scholar
  26. Ying L, Xu P, Huang S, Wang Y (2011) Antioxidant activity of bioactive compounds extracted from Ampelopsis grossedentata leaves by optimized supercritical carbon dioxide. J Med Plants Res 5(17):4373–4381Google Scholar
  27. Zeng CH, Yang K, Xu MG, Wu G, Zhong ZG (2013) Antibacterial mechanisms of total flavonoids from Ampelopsis grossedentata on Staphylococcus aureus. China Exp Tradit Med Formul 19:249–252Google Scholar
  28. Zhang HF, Yang XH, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22(12):672–688CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  • Jingyao Tian
    • 1
  • Siddique Muhammad
    • 1
  • Ai Chen
    • 1
  • Peng Chen
    • 1
  • Jinghong Wang
    • 1
    Email author
  • Chengwu Yang
    • 1
  • Hui Yuan
    • 1
  • Zhensheng Wang
    • 1
  1. 1.College of Landscape ArchitectureNortheast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations