Novel in silico EST-SSR markers and bioinformatic approaches to detect genetic variation among peach (Prunus persica L.) germplasm

  • Mehrana Koohi Dehkordi
  • Tayebeh Beigzadeh
  • Karim SorkhehEmail author
Original Paper


Because there are thousands of peach cultivars, cultivar classification is a critical step before starting a breeding project. Various molecular markers such as simple sequence repeats (SSRs) can be used. In this study, 67 polymorphic primers produced 302 bands. Higher values for SI index (1.903) suggested higher genetic variability in the genotype under investigation. Mean values for observed alleles (Na), expected heterozygosity (He), effective alleles (Ne), Nei’s information index (h), and polymorphic information content (PIC) were 4.5, 0.83, 5.45, 0.83, and 0.81, respectively. The dendrogram constructed based on Jaccard’s similarity coefficients outlined four distinct clusters in the entire germplasm. In addition, an analysis of molecular variance (AMOVA) showed that 70.68% of the total variation was due to within-population variation, while 29.32% was due to variation among populations. According to this research, all primers were successfully used for the peach accessions. The EST-SSR markers should be useful in peach breeding programs and other research.


Expressed sequenced tags (EST) Simple sequence repeats (SSR) Prunus persica L. Genetic diversityl 



Polymorphic information content


Unweighted pair group method with arithmetic average


Analysis of molecular variance


Expressed sequenced tags


Simple sequence repeats


Polymerase chain reaction


Shannon’s information index


Nei’s information index


Expected heterozygosity


Observed hetrozygosity


Effective alleles


Observed number of alleles


Markov chain Monte Carlo,


Marker-assisted selection


Supplementary material

11676_2019_922_MOESM1_ESM.docx (67 kb)
Supplementary material 1 (DOCX 66 kb)


  1. Amirbakhtiar N, Shiran B, Moradi H, Sayed-Tabatabaei BE (2006) Molecular characterization of almond cultivars using microsatellite markers. Acta Hort 726:51–56CrossRefGoogle Scholar
  2. Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560CrossRefGoogle Scholar
  3. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186CrossRefGoogle Scholar
  4. Aranzana MJ, Garcia-Mas J, Carbo´ J, Aru´s P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92CrossRefGoogle Scholar
  5. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Aru´s P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825CrossRefGoogle Scholar
  6. Arolu IW, Rafii MY, Hanafi MM, Mahmud TMM, Latif MA (2012) Molecular characterization of Jatropha curcas germplasm using inter simple sequence repeat (ISSR) markers in Peninsular Malaysia. Aust J Crop Sci 6:1666–1673Google Scholar
  7. Benson LL, Lamboy WF, Zimmerman RH (2001) Molecular identification of Malus hupehensis (tea crabapple) accessions using simple sequence repeats. Hortic Sci 36:961–966Google Scholar
  8. Blair MW, Gonza´lez LF, Kimani PM, Butare L (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121:237–248CrossRefGoogle Scholar
  9. Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using SSR. J Am Soc Hortic Sci 126:205–209CrossRefGoogle Scholar
  10. Chen CX, Zhou P, Choi YA, Huang S, Gmitter FG (2006) Mining and characterizing microsatellites from Citrus ESTs. Theor Appl Genet 112:1248–1257CrossRefGoogle Scholar
  11. Chen CX, Bock CH, Okie WR, Gmitter FG, Jung S, Main D, Beckman TG, Wood BW (2014) Genome-wide characterization and selection of expressed sequence tag simple sequence repeat primers for optimized marker distribution and reliability in peach. Tree Genet Genomes 10:1271–1279CrossRefGoogle Scholar
  12. Cipriani G, Lot G, HuangWG Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  13. Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922CrossRefGoogle Scholar
  14. Dettori MT, Micali S, Giovinazzi J, Scalabrin S, Verde I, Cipriani G (2015) Mining microsatellites in the peach genome: development of new long-core SSR marker for genetic analyses in five Prunus species. Springerplus 4:337CrossRefGoogle Scholar
  15. Ding MM, Wang K, Wang WT, Chen MJ, Wu DJ, Xu CJ, Chen KS (2017) Development of high quality EST-SSR markers without stutter bands in peach and their application in cultivar discrimination and hybrid authentication. Hortic Sci 52:24–30Google Scholar
  16. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Aru´s P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet 105:127–138CrossRefGoogle Scholar
  17. Du QZ, Zhang DQ, Li BL (2012) Development of 15 novel microsatellite markers from cellulose synthase genes in Populus tomentosa (Salicaceae). Am J Bot 99:46–48CrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  19. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50CrossRefGoogle Scholar
  20. Fathi A, Ghareyazi B, Haghnazari A, Ghaffari MR, Pirseyedi SM, Kadkhodaei S, Naghavi MR, Mardi M (2008) Assessment of the genetic diversity of almond (Prunus dulcis) using microsatellite markers and morphological traits. Iran J Biotechnol 6(2):98–106Google Scholar
  21. Fu N, Wang PY, Liu XD, Shen HL (2014) Use of EST-SSR markers for evaluating genetic diversity and fingerprinting Celery (Apium graveolens L.) cultivars. Molecules 19:1939–1955CrossRefGoogle Scholar
  22. Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611CrossRefGoogle Scholar
  23. Hagen LS, Chaib J, Fad B, Decrocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L). Mol Ecol Notes 4:742–745CrossRefGoogle Scholar
  24. Hu J, Wang LY, Li J (2011) Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biol Plant 55:577–580CrossRefGoogle Scholar
  25. Huang XQ, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877CrossRefGoogle Scholar
  26. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud des Sci Nat 44:223–270Google Scholar
  27. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510CrossRefGoogle Scholar
  28. Kumar H, Kaur G, Banga S (2012) Molecular characterization and assessment of genetic diversity in sesame (Sesamum indicum L.) germplasm collection using ISSR markers. J Crop Improv 26:540–557CrossRefGoogle Scholar
  29. Lamboy WF, Alpha CG (1998) Using simple sequence repeats (SSRs) for fingerprinting germplasm accessions of grape (Vitis L.) species. J Am Soc Hortic Sci 123:182–188CrossRefGoogle Scholar
  30. Li G, Ra WH, Park JW, Kwon SW, Lee JH, Park CB, Park YJ (2011) Developing EST-SSR markers to study molecular diversity in Liriope and Ophiopogon. Biochem Syst Ecol 39:241–252CrossRefGoogle Scholar
  31. Li XY, Shangguan LF, Song CN, Wang C, Gao ZH, Yu HP, Fang JG (2014) Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers. BMC Genet 11:66CrossRefGoogle Scholar
  32. Ma RC, Xie H, Xu Y, Ma Y, Jiang YQ, Cao MQ (2003) Molecular analysis of almond germplasm in China. Options Mediterr 63:281–290Google Scholar
  33. Martínez-Gómez P, Arulsekar S, Potter D, Gradziel TM (2003) An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131:313–322CrossRefGoogle Scholar
  34. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200CrossRefGoogle Scholar
  35. Mujaju C, Sehic J, Nybom H (2013) Assessment of EST-SSR markers for evaluating genetic diversity in Watermelon accessions from Zimbabwe. Am J Plant Sci 4:1448–1456CrossRefGoogle Scholar
  36. Murray HC, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 8:4321–4325CrossRefGoogle Scholar
  37. Nagaraj SH, Gasser RB, Ranganathan S (2007) A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform 8:6–21CrossRefGoogle Scholar
  38. Parsons JB, Newbury HT, Jackson MT, Ford-Lloyd BV (1997) Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Mole Breed 3:115–125CrossRefGoogle Scholar
  39. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652CrossRefGoogle Scholar
  40. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181CrossRefGoogle Scholar
  41. Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3:136–145Google Scholar
  42. Rohlf FJ (2002) NTSYS-pc: numerical taxonomy system ver.2.1. Exeter Publishing Ltd., New YorkGoogle Scholar
  43. Shiran B, Amirbakhtiar N, Kiani S, Mohammadi S, Sayed-Tabatabaei BE, Moradi H (2007) Molecular characterization and genetic relationship among almond cultivars assessed by RAPD and SSR markers. Sci Hortic 111:280–292CrossRefGoogle Scholar
  44. Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martinez-Gomez P, Asadi E (2007) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156:327–344CrossRefGoogle Scholar
  45. Sorkheh K, Prudencio AS, Ghebinejad A, Kohei Dehkordi M, Erogul D, Rubio M, Martínez-Gómez P (2016) In silico search, characterization and validation of new EST-SSR markers in the genus Prunus. BMC Res Notes 9:336CrossRefGoogle Scholar
  46. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunuspersica (L.) Batsch]. Theor Appl Genet 101:421–428CrossRefGoogle Scholar
  47. Testolin R, Marrazzo T, Cipriani G (2000) Microsatellite DNA in peach [Prunus persica (L.) Batsch] and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520CrossRefGoogle Scholar
  48. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55CrossRefGoogle Scholar
  49. Vendramin E, Dettori MT, Giovinazzi J, Micali R, Quarta R, Verde I (2007) A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes 7:307–310CrossRefGoogle Scholar
  50. Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG (2002) High throughput targeted SSR marker development in peach [Prunus persica (L.) Batsch]. Genome 45:319–328CrossRefGoogle Scholar
  51. Wang YJ, Li XY, Han J, Fang WM, Li XD, Wang SS, Fang JG (2014) Analysis of genetic relationships and identification of flowering-mei cultivars using EST-SSR markers developed from apricot and fruiting-mei. Scientia Hortic 132:12–17CrossRefGoogle Scholar
  52. Weising K, Nybon H, Wolff K, Meyer W (1995) DNA fingerprinting in plants and fungi. CRC Press, Boca RatonGoogle Scholar
  53. Whitfield CW, Band MR, Bonaldo MF, Kumar CG, Liu L, Pardinas JR, Robertson HM, Soares MB, Robinson GE (2001) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res 12:555–566CrossRefGoogle Scholar
  54. Xie H, Sui Y, Chang FQ, Xu Y, Ma RC (2006) SSR allelic variation in almond (Prunus dulcis Mill). Theor Appl Genet 112:366–372CrossRefGoogle Scholar
  55. Xu Y, Ma RC, Xie H, Liu JT, Cao MQ (2004) Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 47:1091–1104CrossRefGoogle Scholar
  56. Yamamoto T, Mochida K, Imai T, Shi IZ, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–302CrossRefGoogle Scholar
  57. Yeh FC, Yang R, Boyle TJ, Ye Z, Xiyan JM (2000) PopGene32, Microsoft Windows based Freeware for Population Genetic Analysis, Version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, EdmontonGoogle Scholar
  58. Zeinalabedini M, Majourhat K, Khayam-Nekoui M, Grigorian V, Torchi M, Dicenta F, Martinez-Gomez P (2007) Molecular characterization of almond cultivars and related wild species using nuclear and chloroplast DNA markers. J Food Agric Environ 5(3–4):242–247Google Scholar
  59. Zhang GW, Xu SC, Mao WH, Hu QZ, Gong YM (2013) Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers. J Zhejiang Univ Sci B 14:279–288CrossRefGoogle Scholar
  60. Zhebentyayeva T, Reighard G, Gorina V, Abbott A (2003) Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet 106:435–444CrossRefGoogle Scholar
  61. Zhen YQ, Li ZZ, Huang HW, Wang Y (2004) Molecular characterization of kiwifruit (Actinidia) cultivars and selections using SSR markers. J Am Soc Hortic Sci 129:374–382CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  • Mehrana Koohi Dehkordi
    • 1
  • Tayebeh Beigzadeh
    • 1
  • Karim Sorkheh
    • 2
    Email author
  1. 1.Department of Agronomy, Faculty of AgriculturePayame-Noor UniversityTehranIran
  2. 2.Department of Agronomy and Plant Breeding, Faculty of AgricultureShahid Chamran University of AhvazAhvazIran

Personalised recommendations