Journal of Forestry Research

, Volume 30, Issue 5, pp 1543–1553 | Cite as

Remote sensing and geographic information systems techniques in studies on treeline ecotone dynamics

  • Parveen K. ChhetriEmail author
  • Eric Thai
Review Article


We performed a meta-analysis on over 100 studies applying remote sensing (RS) and geographic information systems (GIS) to understand treeline dynamics. A literature search was performed in multiple online databases, including Web of Knowledge (Thomson Reuters), Scopus (Elsevier), BASE (Bielefeld Academic Search Engine), CAB Direct, and Google Scholar using treeline-related queries. We found that RS and GIS use has steadily increased in treeline studies since 2000. Spatial-resolution RS and satellite imaging techniques varied from low-resolution MODIS, moderate-resolution Landsat, to high-resolution WorldView and aerial orthophotos. Most papers published in the 1990s used low to moderate resolution sensors such as Landsat Multispectral Scanner and Thematic Mapper, or SPOT PAN (Panchromatic) and MX (Multispectral) RS images. Subsequently, we observed a rise in high-resolution satellite sensors such as ALOS, GeoEye, IKONOS, and WorldView for mapping current and potential treelines. Furthermore, we noticed a shift in emphasis of treeline studies over time: earlier reports focused on mapping treeline positions, whereas RS and GIS are now used to determine the factors that control treeline variation.


Digital elevation model Geographic information systems Remote sensing Treeline 



  1. Alatalo JM, Ferrarini A (2017) Braking effect of climate and topography on global change induced upslope forest expansion. Int J Biometeorl 61(3):541–548CrossRefGoogle Scholar
  2. Allen TR, Walsh SJ (1996) Spatial and compositional pattern of alpine treeline, Glacier National Park. Montana. Photogramm Eng Remote Sens 62(11):1261–1268Google Scholar
  3. Bader MY, Ruijten JJ (2008) A topography-based model of forest cover at the alpine tree line in the tropical Andes. J Biogeogr 35(4):711–723CrossRefGoogle Scholar
  4. Baker WL, Weisberg PJ (1995) Landscape analysis of the forest-tundra ecotone in Rocky Mountain National Park Colorado. Prof Geogr 47(4):361–375CrossRefGoogle Scholar
  5. Baker WL, Weisberg PJ (1997) Using gis to model tree population parameters in the rocky mountain national park forest–tundra ecotone. J Biogeogr 24(4):513–526CrossRefGoogle Scholar
  6. Baker WL, Honaker JJ, Weisberg PJ (1995) Using aerial photography and gis to map the forest-tundra ecotone in rocky mountain national park, colorado, for global change research. Photogramm Eng Remote Sens 61(3):313–320Google Scholar
  7. Bishop MP, Shroder JF, Colby JD (2003) Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology 55(1–4):345–361CrossRefGoogle Scholar
  8. Bobrowski M, Gerlitz L, Schickhoff U (2017) Modelling the potential distribution of Betula utilis in the Himalaya. Glob Ecol Conserv 11:69–83CrossRefGoogle Scholar
  9. Bonanomi G, Rita A, Allevato E, Cesarano G, Saulino L, Di Pasquale G, Allegrezza M, Pesaresi S, Borghetti M, Rossi S, Saracino A (2018) Anthropogenic and environmental factors affect the tree line position of Fagus sylvatica along the Apennines (Italy). J Biogeogr 00:1–14. CrossRefGoogle Scholar
  10. Braunisch V, Patthey P, Arlettaz R (2016) Where to combat shrub encroachment in alpine timberline ecosystems: combining remotely-sensed vegetation information with species habitat modelling. PLoS ONE 11:e0164318CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brown DG (1994a) Predicting vegetation types at treeline using topography and biophysical disturbance variables. J Veg Sci 5(5):641–656CrossRefGoogle Scholar
  12. Brown DG (1994b) Comparison of vegetation-topography relationships at the alpine treeline ecotone. Phys Geogr 15(2):125–145CrossRefGoogle Scholar
  13. Bryant E, Ricketts T, Richard W (1991) Use of digital elevation data Landsat TM and vector map data to model treeline in the northeastern U.S. In: Proceedings of the eight thematic conference on geologic remote sensing II, pp 1111–1121Google Scholar
  14. Butler DR, Malanson GP, Bekker MF, Lynn MR (2003) Lithologic, structural, and geomorphic controls on ribbon forest patterns in a glaciated mountain environment. Geomorphology 55(1–4):203–217CrossRefGoogle Scholar
  15. Cairns DM, Moen JON (2004) Herbivory influences tree lines. J Ecol 92(6):1019–1024CrossRefGoogle Scholar
  16. Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Change 63(1–2):181–200CrossRefGoogle Scholar
  17. Case BS, Buckley HL (2015) Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines. PeerJ 3:e1334CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chavez PS (1996) Image-based atmospheric corrections-revisited and improved. Photogramm Eng Remote Sens 62(9):1025–1035Google Scholar
  19. Chhetri PK (2018) Predicting upslope expansion of sub-alpine forest in the Makalu Barun National Park, eastern Nepal, with a hybrid cartographic model. J For Res 29(1):129–137CrossRefGoogle Scholar
  20. Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12(3):558–570CrossRefGoogle Scholar
  21. Chhetri PK, Cairns DM (2018) Low recruitment above treeline indicates treeline stability under changing climate in Dhorpatan Hunting Reserve. Western Nepal. Phys Geogr 39(4):329–342CrossRefGoogle Scholar
  22. Chhetri PK, Shrestha KB, Cairns DM (2017) Topography and human disturbances are major controlling factors in treeline pattern at Barun and Manang area in the Nepal Himalaya. J Mt Sci 14(1):119–127CrossRefGoogle Scholar
  23. Chhetri PK, Gaddis KD, Cairns DM (2018) Predicting the suitable habitat of treeline species in the Nepalese Himalayas under climate change. Mt Res Dev 38(2):153–163CrossRefGoogle Scholar
  24. Cullen LE, Palmer JG, Duncan RP, Stewart GH (2001) Climate change and tree-ring relationships of Nothofagus menziesii tree-line forests. Can J For Res 31(11):1981–1991CrossRefGoogle Scholar
  25. Danzeglocke J (2005) Remote sensing of upper timberline elevation in the Alps on different scales. New strategies for European remote sensing. In: Proceedings of the 24th symposium of the European association of remote sensing laboratories, 25–27 May 2004. Millpress Science Publishers, Dubrovnik, pp 145–151Google Scholar
  26. De Wit HA, Bryn A, Hofgaard A, Karstensen J, Kvalevåg MM, Peters GP (2014) Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake. Glob Change Biol 20(7):2344–2355CrossRefGoogle Scholar
  27. Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A (2008) Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Change Biol 14(7):1581–1591CrossRefGoogle Scholar
  28. Fagan WF, Fortin MJ, Soykan C (2003) Integrating edge detection and dynamic modeling in quantitative analyses of ecological boundaries. Bioscience 53(8):730–738CrossRefGoogle Scholar
  29. Fissore V, Motta R, Palik B, Mondino EB (2015) The role of spatial data and geomatic approaches in treeline mapping: a review of methods and limitations. Eur J Remote Sens 48(1):777–792CrossRefGoogle Scholar
  30. Gao YN, Zhang WC (2009) A simple empirical topographic correction method for ETM + imagery. Int J Remote Sens 30(9):2259–2275CrossRefGoogle Scholar
  31. Gartzia M, Alados CL, Pérez-Cabello F (2014) Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Prog Phys Geog 38(2):201–217CrossRefGoogle Scholar
  32. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90(4):537–544CrossRefPubMedPubMedCentralGoogle Scholar
  33. Groen TA, Fanta HG, Hinkov G, Velichkov I, Duren IV, Zlatanov T (2012) Tree line change detection using historical hexagon mapping camera imagery and Google earth data. GISCI Remote Sens 49(6):933–943CrossRefGoogle Scholar
  34. Gu DG, Gillespie A (1998) Topographic normalization of landsat TM images of forest based on subpixel sun-canopy-sensor geometry. Remote Sens Environ 64(2):166–175CrossRefGoogle Scholar
  35. Guo D, Zhang HY, Hou GL, Zhao JJ, Liu DY, Guo XY (2014) Topographic controls on alpine treeline patterns on Changbai Mountain China. J Mt Sci 11(2):429–441CrossRefGoogle Scholar
  36. Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14(5):395–410CrossRefGoogle Scholar
  37. Jacob M, Frankl A, Hurni H, Lanckriet S, De Ridder M, Guyassa E, Beeckman H, Nyssen J (2017) Land cover dynamics in the Simien Mountains (Ethiopia), half a century after establishment of the National Park. Reg Environ Change 17(3):777–787CrossRefGoogle Scholar
  38. Kimball KD, Weihrauch DM (2000) Alpine vegetation communities and the alpine-treeline ecotone boundary in New England as biomonitors for climate change. In: Proceedings RMRS-P-15-VOL-3. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp 93–101Google Scholar
  39. Klasner FL, Fagre DB (2002) A half century of change in alpine treeline patterns at Glacier National Park, Montana. USA. Arct Antarct Alp Res 34(1):49–56CrossRefGoogle Scholar
  40. Klinge M, Böhner J, Erasmi S (2014) Modelling forest lines and forest distribution patterns with remote sensing data in a mountainous region of semi-arid Central Asia. Biogeosci Discuss 11(10):14667–14698CrossRefGoogle Scholar
  41. Körner C (2012) Alpine treelines. Functional ecology of the global high elevation tree limits. Springer, BaselGoogle Scholar
  42. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31(5):713–732CrossRefGoogle Scholar
  43. Kullman L (2007) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology. J Ecol 95(1):41–52CrossRefGoogle Scholar
  44. Leonelli G, Pelfini M, di Cella UM (2009) Detecting climatic treelines in the Italian Alps: the influence of geomorphological factors and human impacts. Phys Geogr 30(4):338–352CrossRefGoogle Scholar
  45. Leonelli G, Pelfini M, di Cella UM, Garavaglia V (2011) Climate warming and the recent treeline shift in the European Alps: the role of geomorphological factors in high-altitude sites. Ambio 40(3):264–273CrossRefPubMedGoogle Scholar
  46. Leonelli G, Masseroli A, Pelfini M (2016) The influence of topographic variables on treeline trees under different environmental conditions. Phys Geogr 37(1):56–72CrossRefGoogle Scholar
  47. López-Serrano PM, Corral-Rivas JJ, Díaz-Varela RA, Alvarez-Gonzalez JG, Lopez-Sanchez CA (2016) Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using Landsat 5 TM data. Remote Sens 8(5):369CrossRefGoogle Scholar
  48. Luo GP, Dai L (2013) Detection of alpine tree line change with high spatial resolution sensed data. J App Remote Sens 7(1):073520CrossRefGoogle Scholar
  49. Macias-Fauria M, Johnson EA (2013) Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc Natl Acad Sci 110:8117–8122. CrossRefPubMedGoogle Scholar
  50. Mathisen IE, Mikheeva A, Tutubalina OV, Aune S, Hofgaard A (2014) Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl Veg Sci 17(1):6–16CrossRefGoogle Scholar
  51. Mishra NB, Mainali KP (2017) Greening and browning of the Himalaya: spatial patterns and the role of climatic change and human drivers. Sci Total Environ 587:326–339CrossRefPubMedGoogle Scholar
  52. Moen J, Aune K, Edenius L, Angerbjorn A (2004) Potential effects of climate change on treeline position in the Swedish mountains. Ecol Soc 9(1):16CrossRefGoogle Scholar
  53. Moran MS, Bryant R, Thome K, Ni W, Nouvellon Y, Gonzalez-Dugo MP, Qi J, Clarke TR (2001) A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sens Environ 78(1–2):71–82CrossRefGoogle Scholar
  54. Müller M, Schickhoff U, Scholten T, Drollinger S, Bohner J, Chaudhary R (2016) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal Nepal. Prog Phys Geog 40(1):135–160CrossRefGoogle Scholar
  55. Nagendra H (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22(12):2377–2400CrossRefGoogle Scholar
  56. Paulsen J, Körner C (2001) GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J Veg Sci 12:817–824CrossRefGoogle Scholar
  57. Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alpine Bot 124(1):1–12CrossRefGoogle Scholar
  58. Penuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30(6):829–837CrossRefGoogle Scholar
  59. Pettorelli N, Laurance WF, O’Brien TG, Wegmann M, Nagendra H, Turner W (2014) Satellite remote sensing for applied ecologists: opportunities and challenges. J Appl Ecol 51(4):839–848CrossRefGoogle Scholar
  60. Potter C (2016) Vegetation cover change in Glacier National Park detected using 25 years of Landsat satellite image analysis. J Biodivers Manage For 5(1):623–632. CrossRefGoogle Scholar
  61. Resler LM (2006) Geomorphic controls of spatial pattern and process at alpine treeline. Prof Geogr 58(2):124–138CrossRefGoogle Scholar
  62. Resler LM, Fonstad MA, Butler DR (2004) Mapping the alpine treeline ecotone with digital aerial photography and textural analysis. Geocarto Int 19(1):37–44CrossRefGoogle Scholar
  63. Richardson AD, Friedland AJ (2009) A review of the theories to explain arctic and alpine treelines around the world. J Sustain For 28(1–2):218–242CrossRefGoogle Scholar
  64. Roughgarden J, Running S, Matson PA (1991) What does remote sensing do for ecology? Ecology 72(6):1918–1922CrossRefGoogle Scholar
  65. Simms ÉL, Ward H (2013) Multisensor NDVI-based monitoring of the tundra-taiga interface (Mealy Mountains, Labrador, Canada). Remote Sens 5(3):1066–1090CrossRefGoogle Scholar
  66. Steyaert LT, Goodchild MF (1994) Integrating geographic information systems and environmental simulation models: a status review. In: Michener WK, Brunt JW, Stafford SG (eds) Environmental information management and analysis: ecosystem to global scales. Taylor and Francis, Bristol, pp 333–356Google Scholar
  67. Stueve KM, Isaacs RE, Tyrrell LE, Densmore RV (2011) Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range. Ecology 92(2):496–506CrossRefPubMedGoogle Scholar
  68. Tang LN, Shao GF (2015) Drone remote sensing for forestry research and practices. J For Res 26(4):791–797CrossRefGoogle Scholar
  69. Treml V, Šenfeldr M, Chuman T, Ponocná T, Demková K (2016) Twentieth century treeline ecotone advance in the Sudetes Mountains (Central Europe) was induced by agricultural land abandonment rather than climate change. J Veg Sci 27(6):1209–1221CrossRefGoogle Scholar
  70. Troll C (1973) The upper timberlines in different climatic zones. Arct Antarct Alp Res 5:A3–A18Google Scholar
  71. Tueller PT (1998) Approaches to mapping ecotone boundaries using emerging remote sensing technology. In: Proceedings RMRS: 78Google Scholar
  72. Virtanen T, Mikkola K, Nikula A, Christensen JH, Mazhitova GG, Oberman NG, Kuhry P (2004) Modeling the location of the forest line in northeast European Russia with remotely sensed vegetation and GIS-based climate and terrain data. Arct Antarct Alp Res 36(3):314–322CrossRefGoogle Scholar
  73. Vittoz P, Rulence B, Largey T, Freléchoux F (2008) Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arct Antarct Alp Res. 40(1):225–232CrossRefGoogle Scholar
  74. Wallentin G, Tappeiner U, Strobl J, Tasser E (2008) Understanding alpine tree line dynamics: an individual-based model. Ecol Modell 218(3–4):235–246CrossRefGoogle Scholar
  75. Walsh SJ, Kelly NM (1990) Treeline migration and terrain variability: integration of remote sensing digital enhancements and digital elevation models. In: Proceedings of applied geography conferences, pp 24–32Google Scholar
  76. Walsh SJ, Malanson GP, Butler DR (1992) Alpine treeline in glacier national park montana. In: Janelle DG (ed) Geographical snapshots of North America. The Guilford Press, New York, pp 161–171Google Scholar
  77. Walsh SJ, Butler DR, Allen TR, Malanson GP (1994) Influence of snow patterns and snow avalanches on the alpine treeline ecotone. J Veg Sci 5(5):657–672CrossRefGoogle Scholar
  78. Walsh SJ, Butler DR, Malanson GP (1998) An overview of scale, pattern, process relationships in geomorphology: a remote sensing and GIS perspective. Geomorphology 21(3–4):183–205CrossRefGoogle Scholar
  79. Walsh SJ, Butler DR, Malanson GP, Crews-Meyer KA, Messina JP, Xiao N (2003) Mapping, modeling, and visualization of the influences of geomorphic processes on the alpine treeline ecotone, Glacier National Park, MT USA. Geomorphology 53(1–2):129–145CrossRefGoogle Scholar
  80. Wang T, Zhang QB, Ma K (2006) Treeline dynamics in relation to climatic variability in the central Tianshan mountains, northwestern China. Glob Ecol Biogeogr 15(4):406–415CrossRefGoogle Scholar
  81. Wang Y, Pederson N, Ellison AM, Buckley HL, Case BS, Liang E, Julio Camarero J (2016) Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology 97(7):1668–1679CrossRefPubMedGoogle Scholar
  82. Weiss DJ, Walsh SJ (2009) Remote sensing of mountain environments. Geography Compass 3(1):1–21CrossRefGoogle Scholar
  83. White JD, Kroh GC, Pinder JE (1995) Forest mapping at Lassen Volcanic National Park, California, using Landsat TM data and a geographical information system. Photogramm Eng Remote Sens 61:299–305Google Scholar
  84. Xie YC, Sha ZY, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1(1):9–23CrossRefGoogle Scholar
  85. Yao YH, Zhang BP (2015) The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines. Int J Climatol 35(8):1833–1846CrossRefGoogle Scholar
  86. Zhang YJ, Dai LM, Pan J (2001) The trend of tree line on the northern slope of Changbai mountain. J For Res 12(2):97–100CrossRefGoogle Scholar
  87. Zhang YJ, Xu M, Adams JM, Wang XC (2009) Can Landsat imagery detect tree line dynamics? Int J Remote Sens 30(5):1327–1340CrossRefGoogle Scholar
  88. Zhao F, Zhang BP, Pang Y, Yao YH (2014) A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere. J Geog Sci 24(2):226–236CrossRefGoogle Scholar
  89. Zhao F, Zhang BP, Zhang S, Qi WW, He WH, Wang J, Yao YH (2015) Contribution of mass elevation effect to the altitudinal distribution of global treelines. J Mt Sci 12(2):289–297CrossRefGoogle Scholar
  90. Zomer R, Ustin S, Ives J (2002) Using satellite remote sensing for DEM extraction in complex mountainous terrain: landscape analysis of the Makalu Barun National Park of eastern Nepal. Int J Remote Sens 23(1):125–143CrossRefGoogle Scholar
  91. Zong SW, Wu ZF, Xu JW, Li M, Gao XF, He HS, Du HB, Wang L (2014) Current and potential tree locations in tree line ecotone of Changbai mountains, Northeast China: the controlling effects of topography. PLoS ONE 9:e106114CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Northeast Forestry University 2019

Authors and Affiliations

  1. 1.Department of Earth Science and GeographyCalifornia State University Dominguez HillsCarsonUSA

Personalised recommendations