Advertisement

Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia

  • David JuřičkaEmail author
  • Jitka Novotná
  • Jakub Houška
  • Jana Pařílková
  • Jan Hladký
  • Václav Pecina
  • Hana Cihlářová
  • Marcela Burnog
  • Jakub Elbl
  • Zdena Rosická
  • Martin Brtnický
  • Jindřich Kynický
Original Paper

Abstract

The objective of this study is to investigate the potential causes of widespread Larix sibirica Ledeb. mortality observed in the Khentii massif of northern Mongolia. The ratio of deadwood to living trees in affected stands in the Goricho region, the southernmost study site situated close to the Gobi Desert, was as high as 3.6:1. Moisture fluctuations monitored over 2 years using electrical impedance spectrometry revealed that the Goricho study site had higher soil moisture levels than the two less affected sites Barun Bayan and Dzun Bayan. High soil moisture was recorded in an area characterized by highly skeletal soils, ones with more than 35% by volume of rock fragments, and comparatively shallow soil horizons, from valley to mountains. The layer of permafrost influencing hydrogeological processes is much deeper in the Goricho region compared to the undisturbed study sites. Redundancy analysis confirmed a significant number of dead L. sibirica on sites with developed soils. Live forest stands, however damaged, grow in this region on well-drained scree slopes or on rocky bastions. The mass mortality observed for L. sibirica may be directly linked to accelerated permafrost thaw in the area bordered by the Tuul and the Terelj Rivers. Our assumption is that L. sibirica root system necrosis occurred as a result of long-term waterlogging of developed soils with high spatial heterogeneity, normally able to absorb high quantities of groundwater. The areas unaffected were scree fields and rocky bastions characterized by adequate drainage. All of our findings support the primary stages of large-scale permafrost thaw, i.e., correlating increases in soil moisture with increasing permafrost active layer thickness.

Keywords

Larix sibirica Mortality Permafrost thawing Waterlogging Mongolia 

Notes

Acknowledgements

We wish to thank the reviewers and editors for their insightful comments that led to improvements of the manuscript. We are grateful for the support provided by the project Development of forests and the gene pool of local forest tree ecotypes in Mongolia 2015–2017 (a part of the international cooperative development effort of the Czech Republic). We also thank students Michal Vojtek, Michael Bobula, Kryštof Klimpar, Miroslav Trněný, Petr Hledík, Lukáš Vágner, and Diana Sychová for help in gathering data in the Mongolia territory. .

References

  1. Abaimov AP (2010) Geographical distribution and genetics of Siberian larch species. In: Osawa A, Zyryanova O, Matsuura Y, Kajimoto T, Wein R (eds) Permafrost ecosystems. Ecological studies (analysis and synthesis). Springer, Dordrecht, pp 41–58Google Scholar
  2. Anenkhonov OA, Krivobokov LV (2006) Trends of changes in the floristic composition of forest vegetation in the northern Baikal region upon climate warming. Russ J Ecol 37:251–256.  https://doi.org/10.1134/S1067413606040060 CrossRefGoogle Scholar
  3. Antipin VS, Filippova B, Gerel O, Lyzin AV (1976) Geologic framework and origin of zonal hypabyssal intrusions. Geol Geophys, Moscow, pp 44–55Google Scholar
  4. Baltzer JL, Veness T, Chasmer LE, Sniderhan AE, Quinton WL (2014) Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob Change Biol 20:824–834.  https://doi.org/10.1111/gcb.12349 CrossRefGoogle Scholar
  5. Batkhuu N-O, Lee DK, Tsogtbaatar J (2011) Forest and forestry research and education in Mongolia. J Sustain For 30:600–617.  https://doi.org/10.1080/10549811.2011.548761 CrossRefGoogle Scholar
  6. Bellingham PJ, Richardson SJ, Mason NW, Veltman CJ, Allen RB, Allen WJ, Barker RJ, Forsyth DM, Simon JN, Ramsey DS (2016) Introduced deer at low densities do not inhibit the regeneration of a dominant tree. For Ecol Manag 364:70–76.  https://doi.org/10.1016/j.foreco.2015.12.013 CrossRefGoogle Scholar
  7. Bohannon J (2008) The big thaw reaches Mongolia’s pristine north. Science 319:567–568.  https://doi.org/10.1126/science.319.5863.567 CrossRefPubMedGoogle Scholar
  8. Brahy V, Deckers J, Delvaux B (2000) Estimation of soil weathering stage and acid neutralizing capacity in a toposequence Luvisol–Cambisol on loess under deciduous forest in Belgium. Eur J Soil Sci 51:1–13.  https://doi.org/10.1046/j.1365-2389.2000.00285.x CrossRefGoogle Scholar
  9. Callegaro L (2012) Electrical impedance: principles, measurement, and applications. CRC Press, Boca Raton, pp 1–308Google Scholar
  10. Chenlemuge T, Dulamsuren Ch, Hertel D, Schuldt B, Leuschner Ch, Hauck M (2015) Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients. Acta Oecol 63:28–35.  https://doi.org/10.1016/j.actao.2014.11.008 CrossRefGoogle Scholar
  11. Coutts MP, Phylipson JJ (1977) Tolerance of tree roots to waterlogging. I survival of sitka spruce and lodgepole pine. N Phytol 80:63–69CrossRefGoogle Scholar
  12. Crawford RMM (2008) Plants at the margin: ecological limits and climate change. Cambridge University Press, New York, p 203CrossRefGoogle Scholar
  13. Davison EM, Tay FCS (1985) The effects of water logging on seedlings of Eucalyptus Marginata. N Phytol 101:743–753.  https://doi.org/10.1111/j.1469-8137.1985.tb02879.x CrossRefGoogle Scholar
  14. Drury WH (1956) Bog flats and physiographic processes in the Upper Kuskokwim River Region, Alaska. Contrib Gray Herb Harv Univ 178:1–130Google Scholar
  15. Dulamsuren C, Hauck M, Leuschner HH, Leuschner C (2010) Gypsy moth-induced growth decline of Larix sibirica in a forest-steppe ecotone. Dendrochronologia 28:207–213.  https://doi.org/10.1016/j.dendro.2009.05.007 CrossRefGoogle Scholar
  16. Ermakov N, Cherosov M, Gogoleva P (2002) Classification of ultracontinental boreal forests in central Yakutia. Folia Geobot 37:419–440.  https://doi.org/10.1007/BF02803256 CrossRefGoogle Scholar
  17. FAO (2015) Mongolia—global forest resources assessment 2015—country report. Food and Agriculture Organization of the United Nations, Rome, p 11Google Scholar
  18. Genxu W, Shengnan L, Hongchang H, Yuanshou L (2009) Water regime shifts in the active soil layer of the Qinghai–Tibet Plateau permafrost region, under different levels of vegetation. Geoderma 149:280–289.  https://doi.org/10.1016/j.geoderma.2008.12.008 CrossRefGoogle Scholar
  19. Genxu W, Guangsheng L, Chunjie L (2012) Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed. J Hydrol 444–445:22–33.  https://doi.org/10.1016/j.jhydrol.2012.03.033 CrossRefGoogle Scholar
  20. Gradel A, Heansch Ch, Ganbaatar B, Dovdondemberel B, Nadaldorj O, Günther B (2017) Response of white birch (Betula platyphylla Sukaczev) to temperature and precipitation in the mountain forest steppe and taiga of northern Mongolia. Dendrochronologia 41:24–33.  https://doi.org/10.1016/j.dendro.2016.03.005 CrossRefGoogle Scholar
  21. Gravis GF (1974) Geographical distribution and thickness of multi-year frozen rock [permafrost]. In: Gravis GF, Zabolotnik SI, Sukhodrovsky VL, Gavrilova MK, Lisun AM (eds) Geocryological conditions in the People’s Republic of Mongolia. Nauka Publishing, Moscow, pp 30–48 (in Russian) Google Scholar
  22. Hauck M, Dulamsuren C, Heimes C (2008) Effects of insect herbivory on the performance of Larix sibirica in a forest-steppe ecotone. Environ Exp Bot 62:351–356.  https://doi.org/10.1016/j.envexpbot.2007.10.025 CrossRefGoogle Scholar
  23. Hédl R, Svátek M, Dančák M, Rodzay AW, Salleh AB, Kamariah AS (2009) A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea Biodivers Evolut Biogeogr Plants 54:124–130.  https://doi.org/10.3767/000651909X475482 CrossRefGoogle Scholar
  24. Hilbig W, Knapp HD (1983) Vegetation mosaic and floristic elements on the zonal forest-steppe-border in the Chentej Mountains (Mongolia). Flora 174:1–89.  https://doi.org/10.1016/S0367-2530(17)31370-1 CrossRefGoogle Scholar
  25. Iowa State University (2008) Understanding the effects of flooding on trees. https://store.extension.iastate.edu/Product/sul1-pdf. Accessed 23 July 2006
  26. James TM (2011) Temperature sensitivity and recruitment dynamics of Siberian larch (Larix sibirica) and Siberian spruce (Picea obovata) in northern Mongolia’s boreal forest. For Ecol Manag 262:629–636.  https://doi.org/10.1016/j.foreco.2011.04.031 CrossRefGoogle Scholar
  27. Jones DP, Graham RC (1993) Water-holding characteristics of weathered granitic rock in chaparral and forest ecosystems. Soil Sci Soc Am J 57:256–261.  https://doi.org/10.2136/sssaj1993.03615995005700010044x CrossRefGoogle Scholar
  28. Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warming climate in Central Alaska. Clim Change 48:551–579.  https://doi.org/10.1023/A:1005667424292 CrossRefGoogle Scholar
  29. Juřička D, Muchová M, Elbl J, Pecina V, Kynický J, Brtnický M, Rosická Z (2016) Construction of remains of small-scale mining activities as a possible innovative way how to prevent desertification. Int J Environ Sci Technol 13:1405–1418.  https://doi.org/10.1007/s13762-016-0967-6 CrossRefGoogle Scholar
  30. Kaya A, Fang H-Y (1997) Identification of contaminated soils by dielectric constant and electrical conductivity. J Environ Eng 123:169–177CrossRefGoogle Scholar
  31. Khishigjargal M, Dulamsuren Ch, Leuschner HH, Leuschner Ch, Hauck M (2014) Climate effects on inter- and intra-annual larch stemwood anomalies in the Mongolian forest-steppe. Acta Oecol 55:113–121.  https://doi.org/10.1016/j.actao.2013.12.003 CrossRefGoogle Scholar
  32. Kokelj SV, Riseborough D, Coutts R, Kanigan JCN (2010) Permafrost and terrain conditions at northern drilling-mud sumps: Impacts of vegetation and climate change and the management implications. Cold Reg Sci Technol 64:46–56.  https://doi.org/10.1016/j.coldregions.2010.04.009 CrossRefGoogle Scholar
  33. Kooijman AM, Emmer IM, Fanta J, Sevink J (2000) Natural regeneration potential of the degraded Krkonoše forests. Land Degrad Dev 11:459–473.  https://doi.org/10.1002/1099-145X(200009/10)11:5%3c459:AID-LDR407%3e3.0.CO;2-F CrossRefGoogle Scholar
  34. Kozyr IV (2014) Forest vegetation dynamics along an altitudinal gradient in relation to the climate change in Southern Transbaikalia, Russia. Achiev Life Sci 8:23–28.  https://doi.org/10.1016/j.als.2014.11.006 CrossRefGoogle Scholar
  35. Kynický J, Brtnický M, Vavříček D, Uondon M (2009) Permafrost and climatic change in Mongolia. In: Pribullova A, Bicarova S (eds) Sustainable development and bioclimate. Geophys, 1st edn. Slovak Academi of Science, Stará Lesná, pp 34–35Google Scholar
  36. Lieffers VJ, Rothwell RL (1986) Effects of depth of water table and substrate temperature on root and top growth of Picea mariana and Larix lancina seedlings. Can J For Res 16:1201–1206.  https://doi.org/10.1139/x86-214 CrossRefGoogle Scholar
  37. Lioubimtseva E, Cole R, Adams JM, Kapustin G (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62:285–308.  https://doi.org/10.1016/j.jaridenv.2004.11.005 CrossRefGoogle Scholar
  38. Lloyd AH, Yoshikawa K, Fastie CL, Hinzman L, Fraver M (2003) Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska. Permafr Periglac Process 14:93–101.  https://doi.org/10.1002/ppp.446 CrossRefGoogle Scholar
  39. Maasri A, Gelhaus J (2011) The new era of the livestock production in Mongolia: consequences on streams of the Great Lakes Depression. Sci Total Environ 409:4841–4846.  https://doi.org/10.1016/j.scitotenv.2011.08.005 CrossRefPubMedGoogle Scholar
  40. Marin A (2010) Riders under storms: contributions of nomadic herders’ observations to analysing climate change in Mongolia. Glob Environ Change 20:162–176.  https://doi.org/10.1016/j.gloenvcha.2009.10.004 CrossRefGoogle Scholar
  41. Mühlenberg M, Appelfelder J, Hoffmann H, Ayush E, Wilson K (2012) Structure of the montane taiga forests of West Khentii, Northern Mongolia. J For Sci 58:45–56CrossRefGoogle Scholar
  42. Natsagdorj L, Jugder D, Chung YS (2003) Analysis of dust storms observed in Mongolia during 1937–1999. Atmos Environ 37:1401–1411.  https://doi.org/10.1016/S1352-2310(02)01023-3 CrossRefGoogle Scholar
  43. Oliva M, Fritz M (2018) Permafrost degradation on a warmer Earth: challenges and perspectives. Curr Opin Environ Sci Health 5:14–18.  https://doi.org/10.1016/j.coesh.2018.03.007 CrossRefGoogle Scholar
  44. Osterkamp TE, Viereck L, Shur Y, Jorgenson MT, Racine C, Falcon L, Doyle A, Boone RD (2000) Observations of thermokarst and its impact on boreal forests in Alaska, USA. Arct Antarct Alp Res 32:303–315.  https://doi.org/10.2307/1552529 CrossRefGoogle Scholar
  45. Otoda T, Sakamoto K, Hirobe M, Undarmaa J, Yoshikawa K (2013) Influences of anthropogenic disturbances on the dynamics of white birch (Betula platyphylla) forests at the southern boundary of the Mongolian forest-steppe. J For Res 18:82–92.  https://doi.org/10.1007/s10310-011-0324-z CrossRefGoogle Scholar
  46. Owen LA, Richard B, Rhodes EJ, Cunningham WD, Windley BF, Badamgarav J, Drjnamjaa D (1998) Relic permafrost structures in the Gobi of Mongolia: age and significance. J Quat Sci 13:539–547.  https://doi.org/10.1002/(SICI)1099-1417(1998110)13:6%3c539:AID-JQS390%3e3.0.CO;2-N CrossRefGoogle Scholar
  47. Oyuntuya S, Dorj B, Shurentsetseg B, Bayarjargal E (2015) Agrometeorological information for the adaptation to climate change. In: Badmaev NB, Khutakova CB (eds) Soils of steppe and forest steppe ecosystems of inner asia and problems of their sustainable utilization. Buryat State Academy of Agriculture, Ulan-Ude, pp 135–140.  https://doi.org/10.1016/s0168-1923(00)00110-6 CrossRefGoogle Scholar
  48. Pařílková J, Radkovský K (2011) Z-meter III—user’s manual. Print Copy General, Brno, pp 2–3Google Scholar
  49. Payette S, Delwaide A, Caccianiga M, Beauchemin M (2004) Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys Res Lett 31:1–4.  https://doi.org/10.1029/2004GL020358 CrossRefGoogle Scholar
  50. Pejchal M, Šimek P (2012) Evaluation of potential of woody species vegetation components in objects of landscape architecture. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 60:199–204CrossRefGoogle Scholar
  51. Pejchal M, Šimek P (2015) Methodology of wood evaluation for monument care supplies (certified methodology). Mendel University in Brno, Lednice, pp 29–53 (in Czech) Google Scholar
  52. Puhua H (2014) Betula platyphylla SUK. In: Schütt P, Weisgerber H, Schuck H, Lang UM, Roloff A (eds) Enzyklopädie der Holzgewächse—Handbuch und Atlas der Dendrologie. Wiley, Weinheim, p 6.  https://doi.org/10.1002/9783527678518 CrossRefGoogle Scholar
  53. Reimoser F, Armstrong H, Suchant R (1999) Measuring forest damage of ungulates: what should be considered. For Ecol Manag 120:47–58.  https://doi.org/10.1016/S0378-1127(98)00542-8 CrossRefGoogle Scholar
  54. Runyan CW, D’Odorico P (2012) Ecohydrological feedbacks between permafrost and vegetation dynamics. Adv Water Resour 49:1–12.  https://doi.org/10.1016/j.advwatres.2012.07.016 CrossRefGoogle Scholar
  55. Sato T, Kimura F, Kitoh A (2007) Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol 333:144–154.  https://doi.org/10.1016/j.jhydrol.2006.07.023 CrossRefGoogle Scholar
  56. Sharkhuu A, Sharkhuu N, Etzelmüller B, Heggem ES, Nelson FE, Shiklomanov NI, Goulden CE, Brown J (2007) Permafrost monitoring in the Hovsgol mountain region, Mongolia. J Geophys Res 112:1–11.  https://doi.org/10.1029/2006JF000543 CrossRefGoogle Scholar
  57. Sinclair W, Lyon HH (1987) Diseases of trees and shrubs. Cornell University Press, Ithaca, p 575Google Scholar
  58. Smith MW, Riseborough DW (2002) Climate and the limits of permafrost: a zonal analysis. Permafr Periglac Process 13:1–15.  https://doi.org/10.1002/ppp.410 CrossRefGoogle Scholar
  59. Sternberg PD, Anderson MA, Graham RC, Beyers JL, Tice KR (1995) Root distribution and seasonal water status in weathered granitic bedrock under chaparral. Geoderma 72:89–98.  https://doi.org/10.1016/0016-7061(96)00019-5 CrossRefGoogle Scholar
  60. Tsedendash G (1995) Forest vegetation of the Khentey mountains. Dissertation. National University of Mongolia, Mongolia, p 24Google Scholar
  61. Tsogtbaatar J (2004) Deforestation and reforestation needs in Mongolia. For Ecol Manag 201:57–63.  https://doi.org/10.1016/j.foreco.2004.06.011 CrossRefGoogle Scholar
  62. Tumurbaatar B, Mijiddorj B (2006) Permafrost and permafrost thaw in Mongolia. In: Goulden CE, Sitnikova T, Gelhaus J, Boldvig B (eds) The geology, biodiversity and ecology of Lake Hovsgol (Mongolia). Backhuys Publishers, Leiden, pp 41–48Google Scholar
  63. Tutubalina OV, Rees WG (2001) Vegetation degradation in a permafrost region as seen from space: Noril’sk (1961–1999). Cold Reg Sci Technol 32:191–203.  https://doi.org/10.1016/S0165-232X(01)00049-0 CrossRefGoogle Scholar
  64. Vitt DH, Halsey LA, Zoltai SC (1994) The bog landforms of continental western Canada in relation to climate and permafrost patterns. Arct Alp Res 26:1–13.  https://doi.org/10.2307/1551870 CrossRefGoogle Scholar
  65. Walker DA, Jia GJ, Epstein HE, Raynolds MK, Chapin FS III, Copass C, Hinzman LD, Knudson JA, Maier HA, Michaelson GJ, Nelson F, Ping CL, Romanovsky VE, Shiklomanov N (2003) Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies. Permafr Periglac Process 14:103–123.  https://doi.org/10.1002/ppp.452 CrossRefGoogle Scholar
  66. Wei T, Dong W, Yan Q, Chou J, Yang Z, Tian D (2016) Developed and developing world contributions to climate system change based on carbon dioxide, methane and nitrous oxide emissions. Adv Atmos Sci 33:632–643CrossRefGoogle Scholar
  67. Wilde SA, Steinbrenner EC, Pierce RS, Dosen RC, Pronin DT (1953) Influence of forest cover on the state of the ground water table. Soil Sci Soc Am J 17:65–67.  https://doi.org/10.2136/sssaj1953.03615995001700010017x CrossRefGoogle Scholar
  68. Witty JH, Graham RC, Hubbert KR, Doolittle JA, Wald JA (2003) Contributions of water supply from the weathered bedrock zone to forest soil quality. Geoderma 114:389–400.  https://doi.org/10.1016/S0016-7061(03)00051-X CrossRefGoogle Scholar
  69. Woo MK (1992) Impacts of climatic variability and change on Canadian wetlands. Can Water Resour J 17:63–69.  https://doi.org/10.4296/cwrj1701063 CrossRefGoogle Scholar
  70. Ykhanbai H (2010) Mongolia forestry outlook study. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Bangkok, p 21Google Scholar
  71. You Q, Xue X, Peng F, Dong S, Gao Y (2017) Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau. Agric For Meteorol 232:48–65.  https://doi.org/10.1016/j.agrformet.2016.08.004 CrossRefGoogle Scholar
  72. Yuan XZR, Song C, Wang H, Zhang J (2010) Electrochemical impedance spectroscopy in PEM fuel cells. Springer, London, p 420CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University 2018

Authors and Affiliations

  • David Juřička
    • 1
    • 2
    Email author
  • Jitka Novotná
    • 1
  • Jakub Houška
    • 1
  • Jana Pařílková
    • 3
  • Jan Hladký
    • 1
    • 2
  • Václav Pecina
    • 1
  • Hana Cihlářová
    • 1
  • Marcela Burnog
    • 1
  • Jakub Elbl
    • 1
    • 2
  • Zdena Rosická
    • 1
  • Martin Brtnický
    • 1
    • 2
  • Jindřich Kynický
    • 1
    • 2
  1. 1.Department of Geology and Pedology, Faculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
  2. 2.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  3. 3.Institute of Water Structures, Faculty of Civil EngineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations