Advertisement

Selective logging alters allometric relationships of five tropical tree species in seasonal semi-deciduous forests

  • Diego Resende Rodrigues
  • Yves Rafael Bovolenta
  • José Antonio Pimenta
  • Edmilson Bianchini
Original Paper

Abstract

In selectively logged forests, trees are more likely to expand their diameters (D) at the expense of height (H) growth, resulting in variations in H:D relationships. This study examines how selective logging affects the H:D allometric relationships of five common tree species and whether the effects vary with functional groups (shade-intolerant or shade tolerant) in seasonal semi-deciduous forests. Individuals of five species in a 3000 m2 (0.3 ha) plot were marked and heights and diameters recorded. Most of the species, with one exception, showed greater investment in diameter per increment of height compared to an unlogged forest, possibly because of the greater light available. This study shows the effects of selective logging on species populations as evidenced by increases in H:D ratios. Comparison of forest fragments with different degrees of human impact is important because it allows us to understand the differences in architectural characteristics caused by selective logging.

Keywords

Allometry Anthropic exploitation Ecological groups Luminosity Selective logging 

Notes

Acknowledgements

We extend our appreciation to Maristela Y. Zama, Eloísa S. Carvalho, Ana P. Liboni and Gabriel A. de Oliveira for their assistance and very useful suggestions. Our profound thanks to the Postgraduate Program in Biological Sciences of the State University of Londrina for its support, the Brazilian Education Council (CAPES) and the Environmental Institute of Paraná (IAP) for authorizing the work in protected areas.

References

  1. Aiba SI, Kohyama T (1996) Tree species stratification in relation to allometry and demography in a warm-temperate rain forest. J Ecol 84:207–218CrossRefGoogle Scholar
  2. Aiba M, Nakashizuka T (2009) Architectural differences associated with adult stature and wood density in 30 temperate tree species. Funct Ecol 23:265–273CrossRefGoogle Scholar
  3. Alvares CA, Stape JL, Sentelhas PC, Moraes G, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728CrossRefGoogle Scholar
  4. Alves LF, Metzger JP (2006) A regeneração florestal em áreas de floresta secundária na Reserva Florestal do Morro Grande, Cotia, SP. Biota Neotrop 6:1–26CrossRefGoogle Scholar
  5. Alves LF, Santos FAM (2002) Tree allometry and crown shape of four tree species in Atlantic rain forest, south-east Brazil. J Trop Ecol 18:245–260CrossRefGoogle Scholar
  6. Barton AM, Fetcher N, Redhead S (1989) The relationship between treefall gap size and light flux in a neotropical rain forest in Costa Rica. J Trop Ecol 5:437–439CrossRefGoogle Scholar
  7. Batista NA, Bianchini E, Carvalho ES, Pimenta JA (2014) Architecture of tree species of different strata developing in environments with the same light intensity in a semideciduous forest in southern Brazil. Acta Bot Bras 28:34–45CrossRefGoogle Scholar
  8. Bohlman S, O’Brien S (2006) Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. J Trop Ecol 22:123–136CrossRefGoogle Scholar
  9. Brower JE, Zar JH (1984) Field and laboratory methods for general ecology. Brown Publishers, Dubuque, p 226Google Scholar
  10. Burton JI, Zenner EK, Frelich LE, Cornett MW (2009) Patterns of plant community structure within and among primary and second-growth northern hardwood forest stands. For Ecol Manag 258:2556–2568CrossRefGoogle Scholar
  11. Caviglione JH, Kiihl LRB, Caramori PH, Oliveira D (2000) Cartas climáticas do Estado do Paraná. IAPAR, LondrinaGoogle Scholar
  12. Chazdon RL, Fetcher N (1984) Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J Ecol 72:553–564CrossRefGoogle Scholar
  13. Dean TJ, Long JN (1986) Validity of constant-stress and elastic-instability principles of stem formation in Pinus contorta and Trifolium pratense. Ann Bot 58:833–840CrossRefGoogle Scholar
  14. Dent DH, Wright SJ (2009) The future of tropical species in secondary forests: a quantitative review. Biol Conserv 142:2833–2843CrossRefGoogle Scholar
  15. Dias MC, Vieira AOS, Paiva MRC (2002) Florística e fitossociologia das espécies arbóreas das florestas da bacia do rio Tibagi. In: Medri ME, Bianchini E, Shibata O, Pimenta JA (eds) A bacia do rio Tibagi. Universidade Estadual de Londrina, Londrina, pp 109–124Google Scholar
  16. Furtado AG, Sims LP, de Campos Franci L, Pereira L, Haddad CRB, Martins FR (2016) How a non-pioneer tree attains the canopy of a tropical semideciduous forest. Trees 31:93–103CrossRefGoogle Scholar
  17. Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206CrossRefGoogle Scholar
  18. Haddad TM, Hertel MF, Bianchini E, Pimenta JA (2016) Architecture of four tree species from different strata of a semideciduous forest in southern Brazil. Aust J Bot 64:89–99CrossRefGoogle Scholar
  19. Harja D, Vincent G, Mulia R, van Noordwijk M (2012) Tree shape plasticity in relation to crown exposure. Trees 26:1275–1285CrossRefGoogle Scholar
  20. Heineman KD, Jensen E, Shapland A, Bogenrief B, Tan S, Rebarber R, Russo SE (2011) The effects of belowground resources on aboveground allometric growth in Bornean tree species. For Ecol Manag 261:1820–1832CrossRefGoogle Scholar
  21. Holbrook NM, Putz FE (1989) Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (sweet gum). Am J Bot 76:1740–1749CrossRefGoogle Scholar
  22. IBGE (2012) Manual Técnico da Vegetação Brasileira: Manuais Técnicos em Geociências. Fundação Instituto Brasileiro de Geografia e Estatística (IBGE), Rio de Janeiro, p 272Google Scholar
  23. King DA (1986) Tree form, height growth, and susceptibility to wind damage in Acer saccharum. Ecology 67:980–990CrossRefGoogle Scholar
  24. King DA (1990a) Allometry of saplings and understorey trees of a Panamanian forest. Funct Ecol 4:27–32CrossRefGoogle Scholar
  25. King DA (1990b) The adaptive significance of tree height. Am Nat 135:809–828CrossRefGoogle Scholar
  26. King DA (1996) Allometry and life history of tropical trees. J Trop Ecol 12:25–44CrossRefGoogle Scholar
  27. King DA, Clark DA (2011) Allometry of emergent tree species from saplings to above-canopy adults in a Costa Rican rain forest. J Trop Ecol 27:573–579CrossRefGoogle Scholar
  28. Kohyama T (1987) Significance of architecture and allometry in saplings. Funct Ecol 1:399–404CrossRefGoogle Scholar
  29. Kohyama T, Hotta M (1990) Significance of allometry in tropical saplings. Funct Ecol 4:515–521CrossRefGoogle Scholar
  30. Lemmon PE (1956) A spherical densiometer for estimating forest overstory density. For Sci 2:314–320Google Scholar
  31. Liboni AP, Rodrigues DR, Perina BB, Rosa VPP, Bovolenta YR, Bianchini E, Pimenta JA (2010) Relações alométricas da comunidade arbórea de diferentes áreas de uma floresta ombrófila mista do sul do Brasil. Semin Ciênc Biol Saúde 31:125–136CrossRefGoogle Scholar
  32. Liebsch D, Marques MCM, Goldenberg R (2008) How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol Conserv 141:1717–1725CrossRefGoogle Scholar
  33. Lorenzi H (2002) Árvores Brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. Nova Odessa, Instituto Plantarum, p 384Google Scholar
  34. Martínez-Sánchez JL (2008) Allometric variation of shade-tolerant tree species in a Mexican tropical rain forest. Rev Biol Neotrop 5:41–51Google Scholar
  35. McMahon T (1973) Size and shape in biology. Science 80(179):1201–1204CrossRefGoogle Scholar
  36. Niklas KJ (1995) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227CrossRefGoogle Scholar
  37. O’Brien ST, Hubbell SP, Spiro P, Condit R, Foster RB (1995) Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76:1926–1939CrossRefGoogle Scholar
  38. Oliveira MA, Santos AMM, Tabarelli M (2008) Profound impoverishment of the large-tree stand in a hyper-fragmented landscape of the Atlantic forest. For Ecol Manag 256:1910–1917CrossRefGoogle Scholar
  39. Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK (2007) Comparative height–crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am J Bot 94:1951–1962CrossRefPubMedGoogle Scholar
  40. Osuri AM, Kumar VS, Sankaran M (2014) Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. For Ecol Manag 329:375–383CrossRefGoogle Scholar
  41. Poorter L, Bongers F, Sterck FJ, Wöll H (2003) Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology 84:602–608CrossRefGoogle Scholar
  42. Poorter L, Bongers F, Sterck FJ, Wöll H (2005) Beyond the regeneration phase: differentiation of height–light trajectories among tropical tree species. J Ecol 93:256–267CrossRefGoogle Scholar
  43. Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301CrossRefPubMedGoogle Scholar
  44. Raich JW, Khoon GW (1990) Effects of canopy openings on tree seed germination in a Malaysian dipterocarp forest. J Trop Ecol 6:203–217CrossRefGoogle Scholar
  45. Rich PM, Helenurm K, Kearns D, Morse SR, Palmer MW, Short L (1986) Height and stem diameter relationships for dicotyledonous trees and arborescent palms of Costa Rican tropical wet forest. Bull Torrey Bot Club 1:241–246CrossRefGoogle Scholar
  46. Rodrigues DR, Bovolenta YR, Bianchini E, Pimenta JA (2016) Height structure and spatial pattern of five tropical tree species in two seasonal semideciduous forest fragments with different conservation histories. Rev Árvore 40:395–405CrossRefGoogle Scholar
  47. RStudio Team (2016) RStudio: integrated development for R, Version 0.98.981. Rstudio, BostonGoogle Scholar
  48. Rutishauser E, Hérault B, Petronelli P, Sist P (2016) Tree height reduction after selective logging in a Tropical Forest. Biotropica 48:285–289CrossRefGoogle Scholar
  49. Santos HG, Jacomine PKT, Anjos LHC et al (2006) Sistema brasileiro de classificação de solos, 3rd edn. Rio de Janeiro, Embrapa Solos, p 304Google Scholar
  50. Silva FC, Soares-Silva LH (2000) Arboreal flora of the Godoy Forest State Park, Londrina. PR. Brazil. Edinburgh J Bot 57:107–120CrossRefGoogle Scholar
  51. Silveira M (2006) A vegetação do Parque Estadual Mata dos Godoy. Ecologia do Parque Estadual Mata dos Godoy. Londrina, ITEDES, pp 19–27Google Scholar
  52. Soares-Silva LH, Barroso GM (1992) Fitossociologia do estrato arbóreo da floresta na porção norte do Parque Estadual Mata dos Godoy, Londrina-PR, Brasil. In: In “Anais do VIII Congresso da Sociedade Botânica de São Paulo.”Sociedade Botânica de São Paulo, São Paulo, pp 101–112Google Scholar
  53. Sposito TC, Santos FAM (2001) Scaling of stem and crown in eight Cecropia (Cecropiaceae) species of Brazil. Am J Bot 88:939–949CrossRefPubMedGoogle Scholar
  54. Sterck FJ (1999) Crown development in tropical rain forest trees in gaps and understorey. Plant Ecol 143:89–98CrossRefGoogle Scholar
  55. Sterck F, Bongers F (1998) Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am J Bot 85:266CrossRefPubMedGoogle Scholar
  56. Sterck FJ, Bongers F (2001) Crown development in tropical rain forest trees: patterns with tree height and light availability. J Ecol 89:1–13CrossRefGoogle Scholar
  57. Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetation 75:81–86CrossRefGoogle Scholar
  58. Tomé M, Miglioranza E, Vilhena AHT, Fonseca EP (1999) Composição florística e fitossociológica do Parque Estadual Mata São Francisco. Rev do Inst Florest 11:13–23Google Scholar
  59. Vieilledent G, Courbaud B, Kunstler G, Dhôte J-F, Clark JS (2010) Individual variability in tree allometry determines light resource allocation in forest ecosystems: a hierarchical Bayesian approach. Oecologia 163:759–773CrossRefPubMedGoogle Scholar
  60. Warton DI, Weber NC (2002) Common slope tests for bivariate errors-in-variables models. Biom J 44:161CrossRefGoogle Scholar
  61. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc 81:259–291CrossRefPubMedGoogle Scholar
  62. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) SMATR 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259CrossRefGoogle Scholar
  63. Weiner J, Thomas SC (1992) Competition and allometry in three species of annual plants. Ecology 73:648–656CrossRefGoogle Scholar
  64. Yamada T, Ngakan OP, Suzuki E (2005) Differences in growth trajectory and strategy of two sympatric congeneric species in an Indonesian floodplain forest. Am J Bot 92:45–52CrossRefPubMedGoogle Scholar
  65. Zama MY, Bovolenta YR, Carvalho ES, Rodrigues DR, Araujo CG, Sorace MAF, Luz DG (2012) Florística e síndromes de dispersão de espécies arbustivo-arbóreas no Parque Estadual Mata São Francisco, PR, Brasil. Hoehnea 39:369–378CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Diego Resende Rodrigues
    • 1
  • Yves Rafael Bovolenta
    • 1
  • José Antonio Pimenta
    • 1
  • Edmilson Bianchini
    • 1
  1. 1.Departamento de Biologia Animal e Vegetal, Centro de Ciências BiológicasUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations