Advertisement

Screening and verification of the factors influencing somatic embryo maturation of Larix olgensis

Original Paper
  • 39 Downloads

Abstract

With embryogenic callus of Larix olgensisis, we investigated the effects of inositol, glutamine, casein hydrolysate, carbohydrate, abscisic acid and silver nitrate concentration on the maturation of the somatic embryo. Three dominant factors emerged, and we developed a response surface model based on the Box–Behnken design. We defined the optimal conditions for the maturation of somatic embryos. The contents of abscisic acid, silver nitrate, sucrose and casein hydrolysis significantly affected the amount of maturing embryos, but inositol, maltose and glutamine had no effect. By establishing a response surface model with multiple factors, we predicted that the optimal number of L. olgensis somatic embryos was 204 ± 4 g−1 on basal medium, containing 18.28 mg L−1 abscisic acid, 5.46 mg L−1 silver nitrate and 82.67 g L−1 sucrose. In the verification experiments, the addition of 20 mg L−1 abscisic acid, 5 mg L−1 silver nitrate and 80 g L−1 sucrose to BM yielded an average of 202.06 somatic embryos per gram. These results should guide large-scale breeding of L. olgensis.

Keywords

Larix olgensis Embryogenic callus Somatic embryo maturation Box–Behnken design 

References

  1. Bais HP, Sudha G, Ravishankar GA (2001) Influence of putrescine silver nitrate and polyamine inhibitors on the morphogenetic response in untransformed and transformed tissues of Chichorium intybus and their regenerants. Plant Cell Rep 20(6):547–555CrossRefGoogle Scholar
  2. Bandurski RS (1986) [3H] Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L.vegetative tissue. Plant Physiol 80(2):374–377CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125(4):2139–2153CrossRefPubMedPubMedCentralGoogle Scholar
  4. Dong JZ, Dunstan DI (1996) Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss]. Planta 199(3):459–466CrossRefPubMedGoogle Scholar
  5. Dong JZ, Dunstan DI (1997) Characterization of cDNAs representing five abscisic acid-responsive genes associated with somatic embryogenesis in Picea glauca and their responses to abscisic acid stereostructure. Planta 203(4):448–453CrossRefPubMedGoogle Scholar
  6. Dong JZ, Perras MR, Abrams SR, Dunstan DI (1997) Gene expression patterns, and uptake and fate of fed ABA in white spruce somatic embryo tissues during maturation. J Exp Bot 48(307):277–287CrossRefGoogle Scholar
  7. Even CZ, Autar KM, Raphael G (1982) Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines shunts label from 3,4-[14C] methionine into spermidine in aged orange peel discs. Plant Physiol 69(2):385–388CrossRefGoogle Scholar
  8. Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33(6):382CrossRefGoogle Scholar
  9. Kepczynska E, Rudus I, Kepczynski J (2001) Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L. Plant Growth Regul 59(1):63–73CrossRefGoogle Scholar
  10. Klimaszewska K (2011) Larix laricina (Tamarack) somaticembryogenesis and genetic transformation. Can J For Res 27(4):538–550Google Scholar
  11. Kumar V, Giridhar P, Chandrashekar A, Ravishankar GA (2008) Polyamines influence morphogenesis and caffeine biosynthesis in in vitro cultures of Coffea canephora P.ex Fr. Acta Physiol Plant 30(2):217–223CrossRefGoogle Scholar
  12. Li XF, Huang FH, Murphy JB, Gbur EE (1998) Polyethylene glycol and maltose enhance somatic embryo maturation in loblolly pine (Pinus taeda L.). In Vitro Cell Dev Biol–Plant 34(1):22–26CrossRefGoogle Scholar
  13. Li TT, Shi JS, Chen JH, Bian LM, Chen Z, Wu C (2007) Developmental Synchronization of Somatic Embryogenesis under Suspen-sion Culture Condition. Mol Plant Breed 5(3):436–442Google Scholar
  14. Liu ZG, Zhu JJ, Yuan XL, Wang HX, Tan H (2007) On seed rain and soil seed bank of larix olgensis in montane regions of eastern Liaoning Province. Acta Ecol Sin 27(2):579–587Google Scholar
  15. Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine(Pinus sylvestris L.). Plant Cell Tissue Organ Culture 107(1):25–33CrossRefGoogle Scholar
  16. Luo Y, Qin G, Zhang J, Liang Y, Song Y, Zhao MP, Tsuge T, Aoyama T, Liu JJ, Gu HY, Qu LJ (2011) D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis. Plant Cell 23(4):1352–1372CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lv SF, Zhang SG, Qi LW, Sun XM, Wang JH (2005) Somatic embryogenesis from immature embryos of Larix kaempferi. Scientia Silvae Sinicae 41(02):48–52Google Scholar
  18. Mauri PV, Manzanera JA (2011) Somatic embryogenesis of holm oak (Quercus ilex L.): ethylene production and polyamine content. Acta Physiol Plant 33(3):717–723CrossRefGoogle Scholar
  19. Mee JK, Dong JA, Ki BM, Hye SC, Sung RM, Jung HS, Jae HJ, Hyun SK (2016) Highly efficient plant regeneration and Agrobacterium -mediated transformation of Helianthus tuberosus L. Ind Crops Prod 83(2016):670–679Google Scholar
  20. Mundy J, Yamaguchi SK, Chua NH (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87(4):1406–1410CrossRefPubMedPubMedCentralGoogle Scholar
  21. Pegg AE, Poso H (1983) S-adenosylmethionine decarboxylase (rat liver). Methods Enzymol 94(94):234CrossRefPubMedGoogle Scholar
  22. Perez BP, Sommer HE (1987) Factors affecting adventitious bud induction in Pinus Uiottii (Engelm.) embryos cultured in vitro. Plant Cell Tissue Organ Culture 11(1):25–35CrossRefGoogle Scholar
  23. Ptak A, Tahchy AE, Wyzgolik G, Henry M, Laurainmattar D (2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tissue Organ Culture 102(1):61–67CrossRefGoogle Scholar
  24. Puga-Hermida MI, Gallardo M, Rodriguez-Gacio MC, Matilla AJ (2006) Polyamines contents, ethylene synthesis and BrACO2 expression during turnip germination. Biol Plant 50(4):574–580CrossRefGoogle Scholar
  25. Qi LW (2000) Studies on the somatic embryogenesis and establishment of experimental system in larix principis- Rupprechtii. PhD thesis of Chinese Academy of Forestry, BeijingGoogle Scholar
  26. Qi LW, Han YF, Han SY, Wang J, Ewald D (2004) Effects of maltose, NAA and ABA on somatic maturation and radicle rooting of Larix principis- Rupprechtii. Sci Silvae Sin 40(1):52–57Google Scholar
  27. Song Y, Zhen C, Zhang HG, Li SJ (2016) Embryogenic callus induction and somatic embryogenesis from immature zygotic embryos of Larix olgensis. Sci Silvae Sin 52(10):45–54Google Scholar
  28. Sonia G, John C, Margrida O, Celia M (2005) Identification of differentially expressed genes during embryogenesis in Maritime Pine(Pinus pinaster). Silva Lusitana 13(2):203–216Google Scholar
  29. Tuskan GA (1990) Influence of plant growth regulators, basal media and carbohydrate levels on the in vitro development of Pinus ponderosa (Dougl. ex Law.) cotyledon explants. Plant Cell Tissue Organ Culture 20(1):47–52CrossRefGoogle Scholar
  30. Vales T, Feng X, Lin G, Xu N, John C, Gerald SP, Gary FP (2007) Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26(2):133–143CrossRefPubMedGoogle Scholar
  31. Von AP, Klimaszewska K, Bonga JM (1990) Haploid and diplod embryogenesis in Larix leptolepis, L. decidua and their reciprocal hybrids. Can J For Res 20(1):9–14CrossRefGoogle Scholar
  32. Wang XX, Yang YG (2010) Study on the somatic embryogenesis of larix leptolepis. J Anhui Agric Sci 38(4):2118–2121Google Scholar
  33. Wang WD, Li CH, Yang JL, Zhang HG, Zhang SL (2009) Somatic embryogennesis and plantlet regeneration from immature zygotic embryos of hybrid larch. Sci Silvae Sin 45(08):34–38Google Scholar
  34. Yang SW, Wang QY, Xia DA (1994) Genetic improvement of larch. Northeast Forestry University Press, HarbinGoogle Scholar
  35. Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142(1):193–206CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yu DD, Xiao N, Wang QK, Wang S, Hu DM, Zhang JF (2011) Induction and proliferation of embryo callus from Pinus yunnanensis franch. Acta Bot Boreal-Occident Sin 31(10):2119–2133Google Scholar
  37. Zhang JW, Wang JH, Li QF, Ma J (2014) Somatic embryogenesis of Picea asperata induced form immature embryos. Sci Silvae Sin 50(4):39–46Google Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yue Song
    • 1
  • Shujuan Li
    • 1
  • Xiaoming Bai
    • 1
  • Hanguo Zhang
    • 1
  1. 1.State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations