Advertisement

Dendrochronology and climatic signals in the wood of Nectandra oppositifolia from a dense rain forest in southern Brazil

  • Daniela Granato-Souza
  • Eduardo Adenesky-Filho
  • Karin Esemann-Quadros
Original Paper
  • 45 Downloads

Abstract

Nectandra is one of the most representative genera of Lauraceae in the subtropical Atlantic Forest of Brazil. The objective of this work was to study the dendrochronological potential of Nectandra oppositifolia Nees and Mart. from two sites in Santa Catarina State in southern Brazil. A tree-ring chronology of 34 trees was developed. The time span ranged from 1843 to 2013. The oldest and youngest trees were 171 and 47 years-old and the average length of the series was 103 years. Average diameter and annual increment were 20.64 cm and 0.74 mm a−1; diameter and age were unrelated. The species has good dendrochronological potential with an intercorrelation of 0.61 between sites, indicating the existence of a synchronous pattern in the development of the trees. The climate response of the species could be seen by negative tree growth effects for previous hot and current rainy growth seasons.

Keywords

Climate response Dendroclimatology Atlantic forest Growth rings Lauraceae 

Notes

Acknowledgements

The authors thank the Universidade Regional de Blumenau (FURB) and CAPES for granting the master’s scholarship to the first author, researcher Joanna Rebello de Oliveira for helping with fieldwork, researcher Adilson Nicolleti for assistance with fieldwork and making the maps, and the journal reviewers for their useful comments. This paper was developed from research conducted by the first author while completing a master’s degree at the wood anatomy and dendrochronology laboratory at FURB.

References

  1. Alves ES, Angyolossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species, 1. Growth rings and vessels. IAWA J 21:3–30CrossRefGoogle Scholar
  2. Andreacci F, Botosso PC, Galvão F (2013) Sinais climáticos em anéis de crescimento de Cedrela fissilis em diferentes tipologias de florestas ombrófilas do sul do Brasil. Floresta 44(2):323–332CrossRefGoogle Scholar
  3. Ayoade JO (2007) Introdução a climatologia para os trópicos, 12th edn. Bertrand Brasil, Rio de Janeiro, p 332Google Scholar
  4. Backes P, Irgang B (2004) Mata Atlântica. As árvores e a paisagem. Paisagem do Sul, Porto Alegre, p 396Google Scholar
  5. Barros CF, Ferreira-Marcon ML, Callado CH, Lima HRP, Cunha M, Marquete O, Costa CG (2006) Tendências ecológicas na anatomia da madeira de espécie da comunidade arbórea da Reserva Biológica de Poço das Antas, Rio de Janeiro, Brasil. Rodriguésia 57(3):443–460CrossRefGoogle Scholar
  6. Bechara FC, Tiepo EN, Reis A (2009) Contribuição ao manejo sustentável do complex ferruginoso Nectandra na Floresta Nacional de Ibirama, SC. Rev Árvore 33:125–132CrossRefGoogle Scholar
  7. Blasing TJ, Solomon AM, Duvick DN (1984) Response function revisited. Tree Ring Bull 44:1–15Google Scholar
  8. Botoso PC, Vetter RE, Tomazelo-Filho M (2000) Periodicidade e taxa de crescimento de árvores de cedro (Cedrela odorata L., Meliaceae), jacareúba (Callophyllum angulare A.C. Smith, Clusiaceae) e muirapiranga (Eperua bijuga Mart. ex Benth, Leg., Caesalpinoideae) de floresta de Terra Firme, em Manaus-AM. In: Roig FA (ed) Dendrocronologia en América Latina. Ediunc, Mendoza, pp 357–380Google Scholar
  9. Brienen R, Zuidema P (2005) Relating tree growth to rainfall in Bolivian rainforests: a test for six species using tree ring analysis. Oecologia 146:1–12CrossRefPubMedGoogle Scholar
  10. Callado C, Guimarães RC (2010) Estudo dos anéis de crescimento de Schizolobium parahyba (Leguminosae: Caesalpinioideae) após episódio de mortalidade em Ilha Grande, Rio de Janeiro. Rev Bras Bot 33:85–91CrossRefGoogle Scholar
  11. Callado C, Neto SS, Scarano F, Costa C (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15:492–497Google Scholar
  12. CEOPS/FURB (2015) Centro de Operação do Sistema de Alerta 392 da Bacia Hidrográfica do Rio Itajaí/Universidade Regional de Blumenau. http://ceops.furb.br. Accessed 03 July 2015
  13. Clark DA (2007) Detecting tropical forests responses to global climatic and atmospheric change: current challenges and a way forward. Biotropica 39:4–19CrossRefGoogle Scholar
  14. Clark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa Rican tropical rain forest. Tree Ring Bull 82:865–872Google Scholar
  15. Cook ER (1985) A time series analysis approach to tree-ring standardization. University of Arizona, Tucson, Tucson, p 171Google Scholar
  16. Cook ER, Peters K (1981) The smoothingspline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53Google Scholar
  17. Costa MS, Ferreira KEB, Botosso PC, Callado CH (2015) Growth analysis of five Leguminosae native tree species from a seasonal semidecidual lowland forest in Brazil. Dendrochronologia 36:23–32CrossRefGoogle Scholar
  18. Dünisch O (2005) Influence of the El-niño southern oscillation on cambial growth of Cedrela fissilis Vell. in tropical and subtropical Brazil. J Appl Bot Food Qual 79:5–11Google Scholar
  19. EMBRAPA-Centro Nacional de Pesquisa de Solos (2006) Sistema Brasileiro de Classificação de Solos, 2nd edn. Emprapa-Centro Nacional de Pesquisa de Solos, Rio de Janeiro, p 306Google Scholar
  20. Feeley KJ, Joseph Wright S, Nur Supardi MN, Kassim AR, Davies SJ (2007) Decelerating growth in tropical forest trees. Ecol Lett 10:461–469CrossRefPubMedGoogle Scholar
  21. Fritts HC (1976) Tree rings and climate. Academic Press, London, p 567Google Scholar
  22. Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol 187:647–665CrossRefPubMedGoogle Scholar
  23. Gamboa CCS, Rozendaal DMA, Ceccantini G, Angyalossy V, Van Der Borg K, Zuidema PA (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27CrossRefGoogle Scholar
  24. Gandolfi S, Leitão-Filho HF, Bezerra CLF (1995) Levantamento florístico e caráter sucessional das espécies arbustivo-arbóreas de uma floresta mesófila semidecídua no município de Guarulhos, SP. Rev Bras Bot 55:753–767Google Scholar
  25. Hammer Ø, Harper D, Ryan P (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:01–09Google Scholar
  26. Higuchi P, Reis MGF, Reis GG, Pinheiro AL, Silva CT, Oliveira CHR (2006) Composição florística da regeneração natural de espécies arbóreas ao longo de oito anos em um fragmento de Floresta Estacional Semidecidual, em Viçosa, MG. Rev Árvore 30(6):893–904CrossRefGoogle Scholar
  27. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  28. Holmes RL (2001) Dendrochronology program library. Available from the Laboratory of Tree-Ring Research, University of Arizona, TucsonGoogle Scholar
  29. IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bull 10:219–232CrossRefGoogle Scholar
  30. INMET (2015) Instituto Nacional de Meteorologia. Séries meteorológicas 460 históricas para o Brasil. http://www.inmet.gov.br/portal/. Accessed 05 Oct 2015
  31. Latorraca JVF, Souza MT, Silveira LD, Silva AB, Ramos LMA (2015) Dendrocronologia de árvores de Schizolobium parahyba (Vell.) S.F. Blake de ocorrência na Rebio de Tinguá-RJ. Rev Árvore 39:385–394CrossRefGoogle Scholar
  32. Lingner DV, Schorn LA, Vibrans AC, Meyer L, Sevegnani L, Gasper AL, Sobral MG, Kruger A, Klemz G, Schmidt R, Junior CA (2013) Fitossociologia do componente arbóreo/arbustivo da floresta ombrófila densa em Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL, Lingner DV (eds) Inventário Florístico Florestal de Santa Catarina. Floresta Ombrófila Densa. Edifurb, Blumenau, pp 159–200Google Scholar
  33. Lisi CS, Tomazello-Filho M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA J 29:189–207CrossRefGoogle Scholar
  34. Lovejoy S, Schertzer D (2006) Multifractals, cloud radiances and rais. J Hydrol 322:59–88CrossRefGoogle Scholar
  35. Mafra AD (2008) Aconteceu nos ervais: A disputa territorial entre Paraná e Santa Catarina pela exploração da erva mate - região sul do Vale do Rio Negro. Universidade do Contestado, Canoinhas, Brazil, p 150Google Scholar
  36. Maia TM (2013) Estimativa da idade, avaliação do incremento e análise dendrocronológica de Cedrela fissilis Vell. (Meliaceae) em Santa Catarina. Universidade Regional de Blumenau, Blumenau, Brazil, p 73Google Scholar
  37. Mérian P, Pierrat JC, Lebourgeois F (2013) Effect of sampling effort on the regional chronology statistics and climate–growth relationships estimation. Dendrochronologia 31:58–67CrossRefGoogle Scholar
  38. Molion LCB (2010) Variabilidade e alterações climáticas. In: Figueiredo T, Ribeiro LF, Ribeiro AC, Fernandes LF (eds) Clima e recursos naturais. Instituto Politécnico de Bragança, Bragança, pp 17–41Google Scholar
  39. Oliveira JM, Roig FA, Pillar VD (2010) Climatic signals in tree-rings of Araucaria angustifolia in the southern Brazilian highlands. Aust Ecol 35:134–147CrossRefGoogle Scholar
  40. Pinto Sobrinho F de A, Christo AG, Guedes-Bruni RR, Silva AF (2009) Composição florística e estrutura de um fragmento de floresta estacional semidecidual Aluvial em Viçosa (MG). Rev Floresta 39:793–805Google Scholar
  41. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  42. Quinet A (2006) Lauraceae na Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brasil. Rodriguésia 57(3):543–568CrossRefGoogle Scholar
  43. Rozendal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25(1):3–16CrossRefGoogle Scholar
  44. Schöngart J, Piedade MTF, Ludwigshausen S, Hornas V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  45. Schweingruber FH (2007) Wood structure and environment. Springer, Berlin, p 279Google Scholar
  46. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611CrossRefGoogle Scholar
  47. Shimamoto CY, Botosso PC, Amano E, Marques MCM (2015) Stem growth rhythms in trees of a tropical rainforest in Southern Brazil. Trees 30:99–111CrossRefGoogle Scholar
  48. Spathelf P, Tomazello-Filho M, Tonini H (2010) Dendroecological analysis of Ocotea pulchella and Nectandra megapotamica on two sites near Santa Maria, Rio Grande do Sul (Brazil). Floresta 40:777–788Google Scholar
  49. Speer JH (2010) Fundamentals of tree-ring research. The University of Arizona Press, Arizona, p 509Google Scholar
  50. Stahle DW (1999) Useful strategies for development of tropical tree-ring chronologies. IAWA J 20:249–253CrossRefGoogle Scholar
  51. Trenberth KE (1997) The definition of El Niño. Bull Am Meteor Soc 78:2771–2777CrossRefGoogle Scholar
  52. Vibrans AC, Sevegnani L, Gasper AL, Lingner DV (2013) Inventário Florístico Florestal de Santa Catarina. Floresta Ombrófila Densa. Edifurb, Blumenau, p 576Google Scholar
  53. Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteorol 23:201–213CrossRefGoogle Scholar
  54. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Vezenuela. J Ecol 87:391–403CrossRefGoogle Scholar
  55. Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20:217–231CrossRefGoogle Scholar
  56. Zanon MMF, Goldenberg R, Moraes PLR (2009) O gênero Nectandra Rol. ex Rottb. (Lauraceae) no Estado do Paraná, Brasil. Act Bot Bras 23:22–35CrossRefGoogle Scholar
  57. Zuidema PA, Baker PJ, Groenendijk P, Schippers P, Van der Sleen P, Vlam M, Sterck F (2013) Tropical forests and global change: filling knowledge gaps. Trends Plant Sci 18:413–419CrossRefPubMedGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniela Granato-Souza
    • 1
  • Eduardo Adenesky-Filho
    • 1
  • Karin Esemann-Quadros
    • 1
    • 2
  1. 1.Postgraduate Program in ForestryRegional University of Blumenau - FURBBlumenauBrazil
  2. 2.Department of Biological SciencesUniversity of Joinville Region - UNIVILLEJoinvilleBrazil

Personalised recommendations