Advertisement

Effect of the thin cell layer technique in the induction of somatic embryos in Pinus patula Schl. et Cham

  • Marco A. Ramírez-Mosqueda
  • Lourdes G. Iglesias-Andreu
  • Arturo A. Armas-Silva
  • Esmeralda J. Cruz-Gutiérrez
  • José F. de la Torre-Sánchez
  • Otto R. Leyva-Ovalle
  • Carlos M. Galán-Páez
Short Communication
  • 75 Downloads

Abstract

Pinus patula is a species commonly used for reforestation in Mexico. However, efficient methods for the mass production seedlings are required. Micropropagation particularly by somatic embryogenesis provides an option for the rapid multiplication of high-quality, genetically improved material. This study induces somatic embryogenesis in this species using the thin cell layer (TCL) technique. Two sources of explants (complete immature embryos; lTCL segments from immature embryos) were evaluated. The efficiency of TCL from longitudinal sections [lTCL] and transverse [tTCL] was evaluated. The results show using thin cell layers from immature embryos cultivated in 16 light/8 dark hours achieves induction of somatic embryos. A higher percentage of embryogenic callus was obtained when tTCL segments were used as an explant source. These results produced somatic embryos from tTCL segments of an immature embryo without germinating the seed, making the process more time efficient. In addition, this technique can be used to generate somatic embryogenesis in forest species that have low germination rates.

Keywords

Pinus patula Somatic embryos Micropropagation Thin cell layer Maturation 

Notes

Author’s contributions

LGIA, MARM and JFTS conceived and designed research. MARM, EJCG and AAAS conducted experiments. MARM and AAAS analyzed and reviewed the statistical analysis. MARM, ORLO and CMGP performed the histological analyzes. MARM and LGIA wrote the manuscript. LGIA, MARM, AAAS, EJCG, and JFTS read and approved the manuscript.

References

  1. Alvarado-Barrientos MS, Hernandez-Santana V, Asbjornsen H (2013) Variability of the radial profile of sap velocity in Pinus patula from contrasting stands within the seasonal cloud forest zone of Veracruz, Mexico. Agric For Meteorol 168:108–119.  https://doi.org/10.1016/j.agrformet.2012.08.004 CrossRefGoogle Scholar
  2. Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254.  https://doi.org/10.1007/s11240-009-9647-2 CrossRefGoogle Scholar
  3. Debreczy Z, Rácz I (2011) Conifers around the world, vol 1–2. DendroPress Ltd., BudapestGoogle Scholar
  4. Dhir R, Shekhawat GS (2014) In vitro propagation using transverse thin cell layer culture and homogeneity assessment in Ceropegia bulbosa Roxb. J Plant Growth Regul 33:820–830.  https://doi.org/10.1007/s00344-014-9432-2 CrossRefGoogle Scholar
  5. Gernandt DS, Pérez-de la Rosa JA (2014) Biodiversidad de Pinophyta (coníferas) en México. Rev Mex Biodivers 85:126–133.  https://doi.org/10.7550/rmb.32195 CrossRefGoogle Scholar
  6. Gill R, Gerrath J, Saxena PK (1993) High-frequency direct embryogenesis in thin layer cultures of hybrid seed geranium (Pelargonium × hortorum). J Bot Rev Can Bot 71:408–413.  https://doi.org/10.1139/b93-045 CrossRefGoogle Scholar
  7. Gillespie AJR (1992) Pinus patula Schiede and Deppe. Patula pine. Pinaceae. Pine family. USDA Forest Service, Southern Forest Experiment Station, Institute of Tropical Forestry; New OrleansGoogle Scholar
  8. Hsia CN, Korban SS (1996) Factors affecting in vitro establishment and shoot proliferation of Rosa hybrid L. and Rosa chinensis minima. In Vitro Cell Dev Biol Anim 32:217–222.  https://doi.org/10.1007/BF02822690 CrossRefGoogle Scholar
  9. Jones NB, Van Staden J (1995) Plantlet production from somatic embryos of Pinus patula. J Plant Physiol 145:519–525.  https://doi.org/10.1016/S0176-1617(11)81781-5 CrossRefGoogle Scholar
  10. Jones NB, Van Staden J (2001) Improved somatic embryo production from embryogenic tissue of Pinus patula. In Vitro Cell Dev Biol Plant 37:543–549.  https://doi.org/10.1007/s11627-001-0094-y CrossRefGoogle Scholar
  11. Liao YK, Juan IP (2015) Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. J For Res 20:114–124.  https://doi.org/10.1007/s10310-014-0445-2 CrossRefGoogle Scholar
  12. Malabadi RB, Van Staden J (2003) Somatic embryos can be induced from the vegetative shoot apex of mature Pinus patula trees. S Afr J Bot 69:450–451.  https://doi.org/10.1016/S0254-6299(15)30330-6 CrossRefGoogle Scholar
  13. Malabadi RB, Van Staden J (2005) Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cell Dev Biol Plant 41:181–186.  https://doi.org/10.1079/IVP2004623 CrossRefGoogle Scholar
  14. McCown B, Lloyd G (1981) Woody plant medium (WPM) a revised mineral formulation for micro-culture of woody plant species. HortScience 16:453Google Scholar
  15. Monja-Mio KM, Robert ML (2013) Direct somatic embryogenesis of Agave fourcroydes Lem. through thin cell layer culture. In vitro Cell Dev Biol Plant 49:541–549.  https://doi.org/10.1007/s11627-013-9535-7 CrossRefGoogle Scholar
  16. Muñoz-Villers LE, Holwerda F, Gómez-Cárdenas M, Equihua M, Asbjornsen H, Bruijnzeel LA, Marín-Castro BE, Tobón C (2012) Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico. J Hydrol Hydromech 463:53–66.  https://doi.org/10.1016/j.jhydrol.2011.01.062 CrossRefGoogle Scholar
  17. Nhut DT, Le BV, Van Tran Thanh K (2000) Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) using thin cell layer culture of apical meristematic tissue. J Plant Physiol 157:559–565.  https://doi.org/10.1016/S0176-1617(00)80112-1 CrossRefGoogle Scholar
  18. Pereira C, Montalbán IA, García-Mendiguren O, Goicoa T, Ugarte MD, Correia S, Canhoto JM, Moncaleán P (2016) Pinus halepensis somatic embryogenesis is affected by the physical and chemical conditions at the initial stages of the process. J For Res 21:143–150.  https://doi.org/10.1007/s10310-016-0524-7 CrossRefGoogle Scholar
  19. Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Direct organogenesis of Stevia rebaudiana Bertoni using thin cell layer (TCL) method. Sugar Tech 18:424–428.  https://doi.org/10.1007/s12355-015-0391-0 CrossRefGoogle Scholar
  20. Roca MW, Mroginski LA (1991) Cultivo de Tejidos en la Agricultura: Fundamentos y aplicaciones. CIAT (Centro Internacional de Agricultura Tropical), CaliGoogle Scholar
  21. Saeed T, Shahzad A (2015) High frequency plant regeneration in Indian Siris via cyclic somatic embryogenesis with biochemical, histological and SEM investigations. Ind Crop Prod 76:623–637.  https://doi.org/10.1016/j.indcrop.2015.07.060 CrossRefGoogle Scholar
  22. Scherwinski-Pereira JE, Da Guedes RS, Fermino PCP, Silva TL, Costa FHS (2010) Somatic embryogenesis and plant regeneration in oil palm using the thin cell layer technique. In Vitro Cell Dev Biol Plant 46:378–385.  https://doi.org/10.1007/s11627-010-9279-6 CrossRefGoogle Scholar
  23. Sparg SG, Jones NB, van Staden J (2002) Artificial seed from Pinus patula somatic embryos. S Afr J Bot 68:234–238.  https://doi.org/10.1016/S0254-6299(15)30428-2 CrossRefGoogle Scholar
  24. Stefaniak B (1994) Somatic embryogenesis and plant regeneration of gladiolus (Gladiolus hort). Plant Cell Rep 13:386–389.  https://doi.org/10.1007/BF00234143 CrossRefPubMedGoogle Scholar
  25. Steinmacher DA, Krohn NG, Dantas AMC, Stefenon VM, Clement CR, Guerra MP (2007) Somatic embryogenesis in peach palm using the thin cell layer technique: induction, morpho-histological aspects and AFLP analysis of somaclonal variation. Ann Bot 100:699–709.  https://doi.org/10.1093/aob/mcm153 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Teixeira da Silva JA, Dobránszki J (2013) Plant thin cell layers: a 40-year celebration. J Plant Growth Regul 32:922–943.  https://doi.org/10.1007/s00344-013-9336-6 CrossRefGoogle Scholar
  27. Teixeira da Silva JA, Dobránszki J (2014) Dissecting the concept of the thin cell layer: theoretical basis and practical application of the plant growth correction factor to apple, Cymbidium and Chrysanthemum. J Plant Growth Regul 33:881–895.  https://doi.org/10.1007/s00344-014-9437-x CrossRefGoogle Scholar
  28. Teixeira da Silva JA, Malabadi RB (2012) Factors affecting somatic embryogenesis in conifers. J For Res 23:503–515.  https://doi.org/10.1007/s11676-012-0266-0 CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marco A. Ramírez-Mosqueda
    • 1
    • 3
  • Lourdes G. Iglesias-Andreu
    • 1
  • Arturo A. Armas-Silva
    • 1
  • Esmeralda J. Cruz-Gutiérrez
    • 2
  • José F. de la Torre-Sánchez
    • 2
  • Otto R. Leyva-Ovalle
    • 3
  • Carlos M. Galán-Páez
    • 3
  1. 1.Instituto de Biotecnología y Ecología Aplicada (INBIOTECA)Universidad VeracruzanaXalapaMexico
  2. 2.Centro Nacional de Recursos Genéticos-INIFAPTepatitlán de MorelosMexico
  3. 3.Facultad de Ciencias Biológicas y Agropecuarias Región Córdoba-Orizaba, Universidad VeracruzanaAmatlan de los ReyesMexico

Personalised recommendations