Variable-top stem biomass equations at tree-level generated by a simultaneous density-integral system for second growth forests of roble, raulí, and coigüe in Chile

  • Carlos Valenzuela
  • Eduardo Acuña
  • Alicia Ortega
  • Gerónimo Quiñonez-Barraza
  • José Corral-Rivas
  • Jorge Cancino
Original Paper
  • 40 Downloads

Abstract

Variable-top stem biomass models at the tree level for second growth forests of roble (Nothofagus obliqua), raulí (Nothofagus alpina), and coigüe (Nothofagus dombeyi) were fitted by a simultaneous density-integral system, which combines a stem taper model and a wood basic density model. For each model, an autoregressive structure of order 2 and a power equation of residual variance were incorporated to reduce residual autocorrelation and heteroscedasticity, respectively. By using dummy variables in the regression analysis, zonal effects on the parameters in the variable-top stem biomass equations were detected in roble. Consequently, equations for clusters of zones were obtained. These equations presented significant parameters and a high precision in both fitting and validation processes (i.e., CV < 11.5% and CVp < 11.9%, respectively), demonstrating that they are unbiased. The advantage of these types of functions is that they provide estimates of volume and biomass of sections of the stem, defined between any two points of the stem in the three species. Thus, depending on the final use of the wood and the dimensions of the tree, a stem fraction can be quantified in units of volume and the remaining fraction in units of weight.

Keywords

Autocorrelation Density-integral Dummy variables Autoregressive error structure Heteroscedasticity 

Notes

Acknowledgements

Authors thank the Forest Company MASISA S.A., for granting access to farms of its assets to collect data.

Author’s contributions

Carlos Valenzuela and Gerónimo Quiñonez-Barraza are co-authors.

References

  1. Akaike H (1974) A new look at the statistical identification model. IEEE Trans Autom Control 19(2):716–723CrossRefGoogle Scholar
  2. Arias-Rodil M, Diéguez-Aranda U, Rodríguez F, López-Sánchez C, Canga E, Cámara A, Castedo-Dorado F (2015) Modelling and localizing a stem taper function for Pinus radiata in Spain. Can J For Res 45:647–658CrossRefGoogle Scholar
  3. Barrio M, Álvarez-González JG, Díaz-Maroto IJ (2004) Elaboración de una tarifa con clasificación de productos para Quercus robur L. en Galicia basada en un modelo de volumen porcentual. Investig Agraria Sist Recur For 13:506–517Google Scholar
  4. Brooks JR, Lichun J, Alexander C (2007a) Compatible stem taper, volume, and weight equations for young longleaf pine plantations in Southwest Georgia. South J Appl For 31(4):187–191Google Scholar
  5. Brooks JR, Jiang LC, Zhang YJ (2007b) Predicting green and dry mass of yellow-poplar: an integral approach. Can J For Res 37(4):786–794CrossRefGoogle Scholar
  6. Brown S, Gillespie A, Lugo A (1989) Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35(4):881–902Google Scholar
  7. Bruce R, Curtis L, Van Coevering C (1968) Development of a system of taper and volume tables for red alder. For Sci 14:339–350Google Scholar
  8. Calegario N, Gregoire TG, da Silva TA, Filho MT, Alves JA (2017) Integrated system of equations for estimating stem volume, density, and biomass for Australian redcedar (Toona ciliata) plantations. Can J For Res 47:681–689CrossRefGoogle Scholar
  9. Canales AV (2009) Efecto de la intensidad de raleo en el área foliar y la distribución de biomasa en árboles individuales pertenecientes a un renoval puro de roble (Nothofagus oblicua. Mirb. Oerst) de 34 años de edad. Tesis Ingeniero Forestal. Universidad de Concepción, Facultad de Ciencias Forestales, Concepción, Chile, p 29Google Scholar
  10. CONAF (2011) Corporación Nacional Forestal, CL. Catastro de los recursos vegetacionales nativos de Chile. Sección Monitoreo de Ecosistemas Forestales. Santiago, Chile, p 28Google Scholar
  11. Crecente-Campo F, Rojo A, Diéguez-Aranda U (2009) A merchantable volume system for Pinus sylvestris L. in the major mountains ranges of Spain. Ann For Sci 66(808):1–12Google Scholar
  12. Díaz G, Monteoliva S, Álvarez J, Fernández E (2010) Populus deltoides ‘Australiano 129/60’: variación axial de la densidad y desarrollo de un modelo predictivo de la densidad del árbol completo. Bosque 31(1):65–72CrossRefGoogle Scholar
  13. Diggle PJ, Heagerty P, Liang KY, Zeger SL (2001) Analysis of longitudinal data, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  14. Donoso P, Donoso C, Sandoval V (1993) Proposición de zonas de crecimiento de renovales de roble (Nothofagus obliqua) y raulí (Nothofagus alpina) en su rango de distribución natural. Bosque 14(2):37–55CrossRefGoogle Scholar
  15. Fang SZ, Yang WZ (2003) Interclonal and within-tree variation in wood properties of poplar clones. J For Res 14(4):263–268CrossRefGoogle Scholar
  16. Fehrmann L, Kleinn C (2006) General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe. For Ecol Manag 236:412–421CrossRefGoogle Scholar
  17. Flórez V, Valenzuela C, Acuña E, Cancino J (2014) Combining taper and basic wood density equations for estimating stem biomass of the Populus x canadensis I-488 variety. Bosque 35(1):89–100CrossRefGoogle Scholar
  18. Fonseca W, Alice FG, Rey JM (2009) Modelos para estimar la biomasa de especies nativas en plantaciones y bosques secundarios en la zona Caribe de Costa Rica. Bosque 30(1):36–47CrossRefGoogle Scholar
  19. Garber SM, Maguire DA (2003) Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures. For Ecol Manag 179:507–522CrossRefGoogle Scholar
  20. Gayoso J (2002) Medición de la capacidad de captura de carbono en bosques nativos y plantaciones de Chile. Rev For Iberoam 1(1):1–13Google Scholar
  21. Gayoso J (2013) Funciones alométricas para la determinación de existencias de carbono forestal para la especie Nothofagus obliqua (Mirb.) Oerst. (roble), Santiago, Chile, CONAF, p 41Google Scholar
  22. Gómez-García E, Crecente-Campo F, Diéguez-Aranda U (2013) Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain. Ann For Sci 70(7):707–715CrossRefGoogle Scholar
  23. Gregoire TG, Schabenberger O (1996) A non-linear mixed-effects model to predict cumulative bole volume of standing trees. J Appl Stat 23(2–3):257–271CrossRefGoogle Scholar
  24. Gregoire TG, Schabenberger O, Barrett JP (1995) Linear modeling of irregularly spaced, unbalanced, longitudinal data from permanent plot measurement. Can J For Res 25:137–156CrossRefGoogle Scholar
  25. Hardy M (1993) Regression with dummy variables. Sage university paper series on quantitative applications in the Social Sciences, 07–093. Sage, Newbury Park, CAGoogle Scholar
  26. Harvey AC (1976) Estimating regression models with multiplicative heteroscedasticity. Econometrica 44(3):461–465CrossRefGoogle Scholar
  27. Jordan L, Souter R, Parresol B, Daniels RF (2006) Application of the algebraic difference approach for developing self-referencing specific gravity and biomass equations. For Sci 52(1):81–92Google Scholar
  28. Kozak A (1997) Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can J For Res 27(5):619–629CrossRefGoogle Scholar
  29. Lara A, Donoso C, Donoso P, Nuñez P, Cavieres A (1999) Normas de manejo para raleo de renovales del tipo forestal roble–raulí–coigüe. In: Silvicultura de los bosques nativos de Chile. 1a Ed. Universitaria, Santiago, Chile, pp 129–144Google Scholar
  30. Leites LP, Robinson AP (2004) Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework. For Sci 50:204–212Google Scholar
  31. Li CP, Xiao CW (2007) Above- and belowground biomass of Artemisia ordosica communities in three contrasting habitats of the Mu Us desert, northern China. J Arid Environ 70:195–207CrossRefGoogle Scholar
  32. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687CrossRefPubMedGoogle Scholar
  33. Muñoz L (2013) Desarrollo de modelos flexibles para la determinación de biomasa fustal de Pinus radiata D. Don en suelos trumaos de la Precordillera andina. Tesis Ingeniero Forestal. Universidad de Concepción, Facultad de Ciencias Forestales, Concepción, Chile, p 32Google Scholar
  34. Návar CJ, Gonzáles N, Graciano J (2001) Ecuaciones para estimar el rendimiento e incremento de biomasa total en plantaciones forestales de Durango, México. Simposio internacional medición y monitoreo de la captura de carbono en ecosistemas forestales, Valdivia-Chile, p 13Google Scholar
  35. Návar J, Nájera J, Jurado E (2002) Biomass estimation equations in the Tamaulipan thornscrub of northeastern Mexico. J Arid Environ 52:167–179CrossRefGoogle Scholar
  36. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1998) Applied linear statistical models. Mc Graw-Hill, New York, p 1408Google Scholar
  37. ODEPA (2000) Oficinas De Estudios y Políticas Agrarias. Clasificación de las explotaciones agrícolas del VI censo nacional agropecuario según tipo de productor y localización geográfica. Ministerio de Agricultura. Documento de trabajo No. 5. I.S.S.N. 0717−0378. Santiago, Chile, p 91Google Scholar
  38. Ott P (1997) The use of indicator variables in non-linear regression. Biometrics information. Ministry of Forests Research Program, British Columbia. Pamphlet 56Google Scholar
  39. Parresol BR, Thomas CE (1989) A density integral approach to estimating stem biomass. For Ecol Manag 26:285–297CrossRefGoogle Scholar
  40. Parresol BR, Thomas CE (1996) A simultaneous density-integral system for estimating stem profile and biomass: slash pine and willow oak. Can J For Res 26:773–781CrossRefGoogle Scholar
  41. Prodan M, Peters R, Cox F, Real P (1997) Mensura forestal. IICA-GTZ, San José, p 561Google Scholar
  42. Sáez M (1991) Biomasa y contenido de nutrientes de renovales no intervenidos roble–raulí (Nothofagus obliqua (Mirb) Oerst—Nothofagus alpina (Poepp. et Endl.) Oerst) en suelos volcánicos de la Precordillera Andina, IX Región, Tesis de Grado. Universidad de Chile, Escuela de Ciencias Forestales, Santiago, Chile, p 96Google Scholar
  43. SAS (2009) SAS/STAT® 9.2 user’s guide, 2nd edn. SAS Institute Inc., Cary, NCGoogle Scholar
  44. Tasissa G, Burkhart HE (1998) An application of mixed effects analysis to modeling thinning effects on stem profile of loblolly pine. For Ecol Manag 103:87–101CrossRefGoogle Scholar
  45. Teshome T (2005) A ratio method for predicting stem merchantable volume and associated taper equations for Cupressus lusitanica, Ethiopia. For Ecol Manag 204:171–179CrossRefGoogle Scholar
  46. Thomas CE, Parresol BR, Lê KH, Lohrey RE (1995) Biomass and taper for trees in thinned and unthinned longleaf pine plantations. South J Appl For 19(1):29–35Google Scholar
  47. Trincado G, Burkhart HE (2006) A generalized approach for modeling and localizing stem profiles curves. For Sci 52:670–682Google Scholar
  48. Vargas-Larreta B, López-Sanchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderon CG, Álvarez-González JG (2017) Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests 8:269CrossRefGoogle Scholar
  49. Ver Planck NR, Macfarlane DW (2015) A vertically integrated whole-tree biomass model. Trees 29:449–460CrossRefGoogle Scholar
  50. Yang YQ, Huang SM, Meng SX (2009) Development of a tree-specific stem profile model for white spruce: a nonlinear mixed model approach with a generalized covariance structure. Forestry 82(5):541–555CrossRefGoogle Scholar
  51. Zakrzewski WT, Duchesne I (2012) Stem biomass model for jack pine (Pinus banksiana Lamb.) in Ontario. For Ecol Manag 279:112–120CrossRefGoogle Scholar
  52. Zhang YJ, Borders BE, Bailey RL (2002) Derivation, fitting, and implication of a compatible stem taper-volume-weight system for intensively managed, fast growing loblolly pine. For Sci 48(3):595–607Google Scholar
  53. Zimmerman D, Núñez-Antón V (2001) Parametric modelling of growth curve data: an overview. Test 10(1):1–73CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Carlos Valenzuela
    • 1
  • Eduardo Acuña
    • 1
  • Alicia Ortega
    • 2
  • Gerónimo Quiñonez-Barraza
    • 3
  • José Corral-Rivas
    • 4
  • Jorge Cancino
    • 1
  1. 1.Departamento Manejo de Bosques y Medio Ambiente, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  2. 2.Instituto de Bosques y Sociedad, Facultad de Ciencias Forestales y Recursos NaturalesUniversidad Austral de ChileValdiviaChile
  3. 3.Campo Experimental Valle del Guadiana, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP)DurangoMexico
  4. 4.Instituto de Silvicultura e Industria de la MaderaUniversidad de Juárez del Estado de DurangoDurangoMexico

Personalised recommendations