Advertisement

Journal of Forestry Research

, Volume 30, Issue 1, pp 205–212 | Cite as

Cellulase production by Aspergillus unguis in solid state fermentation

  • K. Shruthi
  • P. Suresh Yadav
  • B. V. Siva Prasad
  • M. Subhosh Chandra
Original Paper
  • 64 Downloads

Abstract

Lignocellulosic substrates are a good carbon source and provide rich growth media for a variety of microorganisms which produce industrially important enzymes. Cellulases are a group of hydrolytic enzymes such as filter paperase (FPase), carboxymethyl cellulase (CMCase) and β-glucosidase—responsible for release of sugars in the bioconversion of the lignocellulosic biomass into a variety of value-added products. This study examined cellulase production by a newly isolated Aspergillus unguis on individual lignocellulosic substrates in solid state fermentation (SSF). The maximum peak production of enzymes varied from one substrate to another, however, based on the next best solid support and local availability of groundnut fodder supported maximum enzyme yields compared with other solid supports used in this study. Groundnut fodder supported significant production of FPase (5.9 FPU/g of substrate), CMCase (1.1 U/g of substrate) and β-glucosidase activity (6.5 U/g of substrate) in SSF. Considerable secretion of protein (27.0 mg/g of substrate) on groundnut fodder was recorded. Constant increment of protein content in groundnut fodder due to cultivation of A. unguis is an interesting observation and it has implications for the improvement of nutritive value of groundnut fodder for cattle.

Keywords

Lignocellulosic substrates Aspergillus unguis Cellulase Solid state fermentation 

References

  1. Archana A, Satyanarayana T (1997) Xylanase production by thermophilic Bacillus licheniformis A 99 in solid state fermentation. Enzyme Microb Technol 21:12–17CrossRefGoogle Scholar
  2. Bevan MW, Franssen MCR (2006) Investing in green and white biotech. Nat Biotechnol 24:765–767CrossRefGoogle Scholar
  3. Chandra MS, Reddy BR (2013) Exoglucanase production by Aspergillus niger grown on wheat bran. Ann Microbiol 63:871–877CrossRefGoogle Scholar
  4. Chandra MS, Viswanath B, Reddy BR (2007) Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Indian J Microbiol 47:323–328CrossRefGoogle Scholar
  5. Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicelluloses to ethanol. Crit Rev Biotechnol 18:295–331CrossRefGoogle Scholar
  6. Daroit DJ, Silveir ST, Hertz PF, Brandelli A (2007) Production of extracellular β-glucosidase by Monascus purpureus on different growth substrates. Process Biochem 42(5):904–908CrossRefGoogle Scholar
  7. Deschamps F, Giuliano C, Asther M, Huet MC, Roussos S (1985) Cellulase production by Trichoderma harzianum in static and mixed solid state fermentation reactors under nonaseptic conditions. Biotechnol Bioeng 27:869–872CrossRefGoogle Scholar
  8. Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072CrossRefGoogle Scholar
  9. Dienes D, Egyhazi A, Reczey K (2004) Treatment of recycled fiber with Trichoderma cellulases. Ind Crop Prod 20(1):11–21CrossRefGoogle Scholar
  10. Gao JM, Weng HB, Zhu DH, Yuan MX, Guan FX, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid state cultivation of corn stover. Bioresour Technol 99(16):7623–7629CrossRefGoogle Scholar
  11. Gardes MTF, White TJ, Fortin JA, Bruns TD, Taylor JW (1991) Identification of indigenous and introduced symbiotic in ectomycorrhizae by amplification of the nuclear and mitochondrial ribosomal DNA. Can J Bot 69:180–190CrossRefGoogle Scholar
  12. Ghosh TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268CrossRefGoogle Scholar
  13. Hatti-Kaul R, Ulrika T, Linda GB, Orjesson P (2007) Industrial biotechnology for the production of bio-based chemicals acradle to grave perspective. Trend Biotechnol 25:119–124CrossRefGoogle Scholar
  14. Herr D (1979) Secretion of cellulases and β-glucosidase by Trichoderma viride TTCC 1433 in submerged cultures on different substrates. Biotechnol Bioeng 21:1361–1363CrossRefGoogle Scholar
  15. Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91(2):153–156CrossRefGoogle Scholar
  16. Lonsane BK, Ghildyal NP, Butiatman S, Ramakrishma SV (1985) Engineering aspects of solid state fermentation. Enzyme Microb Technol 7:258–265CrossRefGoogle Scholar
  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin Phenol reagent. J Biol Chem 193:265–275Google Scholar
  18. Lynd LR, Weimer PJ, Zyl VWH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefGoogle Scholar
  19. Lynd LR, Vanyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583CrossRefGoogle Scholar
  20. Madhavan A, Srivastava A, Kondo A, Bisaria VS (2012) Bioconversion of lignocellulose derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol 32:22–48CrossRefGoogle Scholar
  21. Mandels M, Weber J (1969) The production of cellulases. In: George JH (ed) Advances in Chemistry Series, vol 95. American Chemical Society, Washington, pp 391–414Google Scholar
  22. Megharaj M, Kookana K, Singleton S (1999) Activities of fenamiphos on native algal population and some enzyme activities in soil. Soil Biol Biochem 39:1549–1553CrossRefGoogle Scholar
  23. Muniswaran PKA, Charyulu NCLN (1994) Solid substrate fermentation of coconut coir pith for cellulase production. Enzym Microb Technol 16:436–440CrossRefGoogle Scholar
  24. Ortega N, Busto MD, Perez-Mateos M (2000) Enzymatic saccharification of pretreated wheat straw by T. reesei cellulases and A. niger β-glucosidase. Biocat Biotrans 18:311–330CrossRefGoogle Scholar
  25. Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861CrossRefGoogle Scholar
  26. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152CrossRefGoogle Scholar
  27. Pericin MD, Madarev ZS, Radulovic MLJ, Krinjar MM (2008) Evaluate of pumpkin oil cake as substrate for the cellulase production by Penicillium roqueforti in solid state fermentation. Roum Biotechnol Lett 13:3815–3820Google Scholar
  28. Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid state fermentation. Biochem Eng J 13:127–135CrossRefGoogle Scholar
  29. Sato K, Sudo S (1990) Small scale solid state fermentation. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM Press, Washington, pp 61–79Google Scholar
  30. St-Germain G, Summerbell R (1996) Identifying filamentous fungi—a clinical laboratory handbook, 1st edn. Star Publishing Co., BelmontGoogle Scholar
  31. Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319CrossRefGoogle Scholar
  32. Szetela RW, Winnicki TZ (1981) A novel method for determining the parameters of microbial kinetics. Biotechnol Bioeng 23:1485–1490CrossRefGoogle Scholar
  33. Valascova V, Baldrian P (2006) Degradation of cellulose and hemicellulose by the brown-rot fungus Piptoporus betulinus—production of extracellular enzymes and characterization of major cellulases. Microbiol 152:3613–3622CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • K. Shruthi
    • 1
  • P. Suresh Yadav
    • 1
  • B. V. Siva Prasad
    • 1
  • M. Subhosh Chandra
    • 1
  1. 1.Department of MicrobiologyYogi Vemana UniversityKadapaIndia

Personalised recommendations