Diversity of the endophytic filamentous fungal leaf community at different development stages of eucalyptus

  • Paulo Sérgio Balbino Miguel
  • Fábio Balbino Miguel
  • Bruno Coutinho Moreira
  • Marcelo Nagem Valério de Oliveira
  • Júlio César Delvaux
  • Fernanda de Souza Freitas
  • Arnaldo Chaer Borges
  • Maurício Dutra Costa
Original Paper


Fungal endophytic species inhabiting the leaves of eucalypts are capable of utilising leaf sugars and can influence both plant growth and health. Endophytic fungal symbionts can use simple soluble sugars in leaves as their main carbon source. This study set out to determine the diversity and distribution of the endophytic filamentous fungal leaf community in the hybrid Eucalyptus urograndis due to its economic importance. The fungal leaf community was characterised using denaturing gradient electrophoresis (DGGE) and correlated with levels of leaf nutrients and sugars throughout plant development. Sequencing of DGGE bands revealed the presence of Basidiomycota and Ascomycota phyla. Fourteen species and three genera of filamentous fungi were identified, and the population structure was affected by the plant developmental stage. Levels of K, Cu, N and Mn influenced communities from the clonal garden, whereas leaves in the field had higher glucose, fructose and sucrose. Many fungi were found to be specific to a certain development stages: Diplomitoporus crustulinus, Podosphaera tridactyla and Aspergillus restrictus to the clonal garden stage; Chaetomella acutiseta and Ascotricha chartarum to the shading stage; Erratomyces patelii and Saxomyces sp. to the shading output stage; Lepidostroma sp. and Saxomyces sp. to the dispatch stage; and Mycosphaerella populicola to the field stage. Teratosphaeria toledana and Teratosphaeria acidotherma were found at more than one developmental stage. Cladosporium sp. and Rhodosporidium fluviale colonized and persisted in plants at the dispatch and field stages. This is the first report of P. tridactyla, A. restrictus, E. patelii, Saxomyces and Lepidostroma sp. as endophytes in eucalipt.


Diversity 18S rRNA Denaturing gradient electrophoresis (DGGE) Sequencing 



The authors thank the Brazilian Federal Agency for Support and Evaluation of Graduate Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–CAPES) and Celulose NipoBrasileira (CENIBRA) for financial support and the Minas Gerais State Research Foundation (Fundação de Amparo à Pesquisa do Estado de Minas Gerais–FAPEMIG) for the grant provided to P. S. B. Miguel. The authors also gratefully acknowledge the Laboratório de Ecologia Microbiana (LEM), of the Microbiology Department at the Universidade Federal de Viçosa, for operational support.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Andjic V, Whyte G, Hardy G, Burgess T (2010) New Teratosphaeria species occurring on eucalypts in Australia. Fungal Diver 43:27–38CrossRefGoogle Scholar
  3. Andrews JH, Harris RF, Spear RN, Lau GW, Nordheim EV (1994) Morphogenesis and adhesion of Aureobasidium pullulans. Can J Microbiol 40:6–17CrossRefGoogle Scholar
  4. Arnold AE (2005) Diversity and ecology of fungal endophytes in tropical forests. In: Deshmukh S (ed) Current trends in mycological research. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 49–68Google Scholar
  5. Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycol 95:388–398CrossRefGoogle Scholar
  6. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549CrossRefPubMedGoogle Scholar
  7. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274CrossRefGoogle Scholar
  8. Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bremner JM, Mulvaney CS (1982) Total nitrogen. In: Page AL (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 595–624Google Scholar
  10. Bresolin JD, Bustamante MMC, Krüger RH, Silva MRSS, Perez KS (2010) Structure and composition of bacterial and fungal community in soil under soybean monoculture in the Brazilian cerrado. Braz J Microbiol 41:391–403CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brooker MIH (2000) A new classification of the genus Eucalyptus L’Her (Myrtaceae). Aust Syst Bot 13:79–148CrossRefGoogle Scholar
  12. Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 281–293CrossRefGoogle Scholar
  13. Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycol 94:210–220CrossRefGoogle Scholar
  14. Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Ferreira JR, Abrahao-Neto J, Farah JP, El-Dorry H (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277:13983–13988CrossRefPubMedGoogle Scholar
  15. Cheewangkoon R, Groenewald JZ, Summerell BA, Hyde KD, To-Anun C, Crous PW (2009) Myrtaceae, a cache of fungal biodiversity. Persoonia 23:55–85CrossRefPubMedPubMedCentralGoogle Scholar
  16. Doidy J, Grace E, Kühn C, Simon-Pas F, Casieri L, Wipf D (2012) Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci 17:413–422CrossRefPubMedGoogle Scholar
  17. Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupledwith ribosomal DNA gene phylogenies reveal uncharacterizedfungal phylotypes. Fungal Divers 23:121–138Google Scholar
  18. Evans TN, Watson G, Rees GN, Seviour RJ (2014) Comparing activated sludge fungal community population diversity using denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism. Antonie Van Leeuwenhoek 105:559–569CrossRefPubMedGoogle Scholar
  19. FAO (2016) State of the world’s forests 2016. Forests and agriculture: land-use challenges and opportunities. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  20. Fromin N, Hamelin J, Tarnaw Ski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 11:634–643CrossRefGoogle Scholar
  21. Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254CrossRefGoogle Scholar
  22. Guerrini IA, Trigueiro RM (2004) Atributos físicos e químicos de substratos compostos por biossólidos e casca de arroz carbonizada. Rev Bras Cienc Solo 28:1069–1076CrossRefGoogle Scholar
  23. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  24. Hardoim PR, Overbeek LSV, Elsas KDV (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefPubMedGoogle Scholar
  25. Hoekstra FA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 8:431–438CrossRefGoogle Scholar
  26. Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second—generation seed viability. J Appl Microbiol 116:109–122CrossRefPubMedGoogle Scholar
  27. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:1–14CrossRefGoogle Scholar
  28. Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay KA, Slippers B (2013) Ion torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS ONE 8:e81718CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kharwar RN, Gond SK, Kimar A, Misha A (2010) A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook, and their antimicrobial activity. World J Microb Biot 26:1941–1948CrossRefGoogle Scholar
  30. Kittelmann S, Naylor GE, Koolaard JP, Janssen PH (2012) A proposed taxonomy of anaerobic fungi (Class Neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS ONE 7:1–13CrossRefGoogle Scholar
  31. Laplante K, Derome N (2011) Parallel changes in the taxonomical structure of bacterial communities exposed to a similar environmental disturbance. Ecol Evol 4:489–501CrossRefGoogle Scholar
  32. Lisec J, Schaeur N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396CrossRefPubMedGoogle Scholar
  33. Lumyong S, Lumyong P, Mckenzie EH, Hyde KD (2002) Enzymatic activity of endophytic fungi of six native seedling species from oi Suthep-Pui National Park, Thailand. Can J Microbiol 48:1109–1112CrossRefPubMedGoogle Scholar
  34. Lupo S, Tiscornia S, Bettucci L (2001) Endophytic fungi from flowers, capsules and seeds of Eucalyptus globulus. Rev Iberoam Micol 18:38–41PubMedGoogle Scholar
  35. Marschener H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203–207CrossRefGoogle Scholar
  36. Maxwell A, Hardy GESTJ, Wingfield MJ, Dell B (2000) First record of Mycosphaerella lateralis on Eucalyptus in Australia. Australas Plant Pathol 29:279CrossRefGoogle Scholar
  37. Maxwell A, Jackson SL, Dell B, Hardy GESJ (2005) PCR-identification of Mycosphaerella species associated with leaf diseases of Eucalyptus. Mycol Res 109:992–1004CrossRefPubMedGoogle Scholar
  38. May LA, Smiley B, Schmidt MG (2001) Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47:829–841CrossRefPubMedGoogle Scholar
  39. Miguel PSB, de Oliveira MNV, Delvaux JC, de Jesus GL, Chaer AC, Tótola MR, Neves JCL, Costa MD (2016) Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth. Antonie Van Leeuwenhoek 109(6):755–771CrossRefPubMedGoogle Scholar
  40. Miguel PSB, Delvaux JC, Oliveira MNV, Moreira BC, Freitas FS, Costa MD, Tótola MR, Neves JCL, Costa MD (2017) Diversity and distribution of the endophytic fungal community in eucalyptus leaves. Afr J Microbiol 11:92–105CrossRefGoogle Scholar
  41. Minitab I (2006) MINITAB statistical software. Version: Release. 15Google Scholar
  42. Oliveira MNV, Santos TMA, Vale HMM, Delvaux JC, Cordero AP, Ferreira AB, Miguel PSB, Tótola MR, Costa MD, Moraes CA, Borges AC (2013) Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol 59:221–230CrossRefPubMedGoogle Scholar
  43. Omacini M, Chaneton EJ, Ghersa CM, Muller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409:78–81CrossRefPubMedGoogle Scholar
  44. Oros-Sichler M, Gomes NCM, Neuber G, Smalla K (2006) A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J Microbiol Meth 65:63–75CrossRefGoogle Scholar
  45. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Phytopathol 49:291CrossRefGoogle Scholar
  46. Rayner ADM, Boddy L (1986) Population structure and the infection biology of wood-decay fungi in living trees. Adv Plant Pathol 5:119–160Google Scholar
  47. Rho H, Kim SH (2017) Endophyte effects on photosynthesis and water use of plant hosts: a meta-analysis. In: Doty S (ed) Functional importance of the plant microbiome. Springer, ChamGoogle Scholar
  48. Robl D, Da Delabona P, Mergel CM, Rojas JD, Dos Costa P, Pimentel IC, Padilha G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:1–12CrossRefGoogle Scholar
  49. Saikkonen K, Wali P, Helander M, Taeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280CrossRefPubMedGoogle Scholar
  50. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  51. Sánchez Márquez S, Bills GF, Zabalgogeazcoa I (2011) Fungal species diversity in juvenile and adult leaves of Eucalyptus globulus from plantations affected by Mycosphaerella leaf disease. Ann Appl Biol 158:177–187CrossRefGoogle Scholar
  52. Schneider H (2007) Métodos de análise filogenética: um guia prático [Methods for phylogenetic analysis: a practical guide]. Holos Editora e Sociedade Brasileira de Genética, Ribeirão PretoGoogle Scholar
  53. Soto-Barajas MC, Iñigo Z, Gómez-Fuertes J, González-Blanco V, Vázquez de Aldana BR (2016) Epichloë endophytes affect the nutrient and fiber content of Lolium perenne regardless of plant genotype. Plant Soil 405:265–277CrossRefGoogle Scholar
  54. Systat Software, Inc (2008) Sigma plot for windows, version 11.0Google Scholar
  55. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936CrossRefGoogle Scholar
  56. You YH, Kang SM, Choo YS, Lee JM (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 22:1549–1556CrossRefPubMedGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paulo Sérgio Balbino Miguel
    • 1
  • Fábio Balbino Miguel
    • 2
  • Bruno Coutinho Moreira
    • 3
  • Marcelo Nagem Valério de Oliveira
    • 4
  • Júlio César Delvaux
    • 5
  • Fernanda de Souza Freitas
    • 6
  • Arnaldo Chaer Borges
    • 6
  • Maurício Dutra Costa
    • 6
  1. 1.Departamento de Medicina e EnfermagemUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  3. 3.Colegiado de Engenharia AgronômicaUniversidade Federal do Vale do São FranciscoPetrolinaBrazil
  4. 4.Departamento de Ciências Básicas da Vida Campus Governador ValadaresUniversidade Federal de Juiz de ForaGovernador ValadaresBrazil
  5. 5.Coordenação Geral de Ensino Pesquisa e Extensão, Instituto Federal do Triângulo MineiroItuiutabaBrazil
  6. 6.Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à AgropecuáriaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations