Journal of Forestry Research

, Volume 30, Issue 1, pp 57–63 | Cite as

Leaf water potential and gas exchange of eucalypt clonal seedlings to leaf solar protectant

  • Talita Miranda Teixeira XavierEmail author
  • José Eduardo Macedo Pezzopane
  • Ricardo Miguel Penchel
  • José Ricardo Macedo Pezzopane
Original Paper


This experiment was carried out in acclimatized greenhouses with seedlings of two hybrid clones of Eucalyptus urophylla × Eucalyptus grandis. A sunscreen protector consisting of 62.5% calcium carbonate was sprayed on the seedlings at weekly intervals. Water stress was induced by suspending irrigation until the soil reached 30% available water and water was then replaced so that it returned to field capacity. Gas exchange and leaf water status were measured after 50 days. The experiment was set up in a 4 × 2 factorial randomized block design in four distinct environments: (1) temperatures less than 21.2 °C and vapor pressure deficit of 0.15 kPa; (2) intermediate temperatures of 24.2 °C and vapor pressure deficit of 0.69 kPa; (3) high temperatures of 27.0 °C and high vapor pressure deficit of 1.4 kPa; and, (4) high temperature of 27.0 °C and vapor pressure deficit below 1.10 kPa. Two leaf sun protector treatments were used, with five replications each. High atmospheric demand acted as a stress factor for the seedlings during the initial growth phase. Applications of leaf sunscreen protector provided beneficial effects in maintaining optimum water status and gas exchanges of the plants under water stress.


Eucalyptus urophylla × Eucalyptus grandis Calcium carbonate Water stress Atmospheric demand 


  1. Agrios GN (2005) Plant pathology. Elsevier, San Diego, p 922Google Scholar
  2. Ahmed FF, Shaaban MM, Abd El-Aal AMK (2011) Protecting crimson seedless grapevines growing in hot climates from sunburn. Res J Agric Biol Sci 7(1):135–141Google Scholar
  3. Armond PA, Schreiber U, Björkman O (1978) Photosynthetic acclimation to temperature in the desert Shrub Larrea divaricata II. Light—harvesting efficiency and electron transport. Plant Physiol 61:411–415CrossRefGoogle Scholar
  4. Bedon F, Maiada J, Feito I, Chaumeil P, Dupuy JW, Lomenech AM, Barre A, Gion JM, Plomion C (2011) Interaction between environmental factors affects the accumulation of root proteins in hydroponically grown Eucalyptus globulus (Labill.). Plant Physiol Biochem 49(1):69–76CrossRefGoogle Scholar
  5. Bertolli SC, Rapchan GL, Souza GM (2012) Photosynthetic limitations caused by different rates of water-deficit induction in Glycine max and Vignaunguiculata. Photosynthetica 50(3):329–336CrossRefGoogle Scholar
  6. Bhargava S, Swantan K (2012) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132(1):21–32CrossRefGoogle Scholar
  7. Carlesso R (1995) Absorção de água pelas plantas: água disponível versus extraível e a produtividade das culturas. Rev Ciênc Rural, Santa Maria 25(1):183–188CrossRefGoogle Scholar
  8. Correia B, Pintó-Marijuan M, Neves L, Brossa R, Dias MC, Costa A, Castro BB, Araujo C, Satos C, Chaves MM, Pinto G (2014) Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. Physiol Plant 150:580–592CrossRefGoogle Scholar
  9. Costa e Silva F, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004) Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiol 24(10):1165–1172CrossRefGoogle Scholar
  10. Gindaba J, Rozanov A, Negash L (2005) Photosynthetic gas exchange, growth and biomass allocation of two Eucalyptus and three indigenous tree species of Ethiopia under moisture deficit. For Ecol Manag 205:127–138CrossRefGoogle Scholar
  11. Gonçalves MR, Passos CAM (2000) Crescimento de cinco espécies de eucalipto submetidas a déficit hídrico em dois níveis de fósforo. Ciênc Florest 10(2):145–161CrossRefGoogle Scholar
  12. Gucci R, Massai R, Xilovannis C, Flores JA (1996) The effect of drought and vapour pressure deficit on gas exchange of young kiwi fruit (Actinidia deliciosa var. deliciosa) vines. Ann Bot 77:605–613CrossRefGoogle Scholar
  13. Hasse G (2006) Eucalipto: histórias de um imigrante vegetal. JÁ Editores, Porto Alegre, p 127Google Scholar
  14. Iba (2015) Brazilian tree industry—report 2015. Brazilian Tree Industry, Brasilia, p 62Google Scholar
  15. Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic Press, London, p 657Google Scholar
  16. Krieg DR (1993). Stress tolerance mechanisms in above ground organs. pp 65–79. In: Proceedings of the workshop on adaptation of plants to soil stress. INTSORMIL, Nebraska, p 348Google Scholar
  17. Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, Berlin, p 540CrossRefGoogle Scholar
  18. Larcher W (2006) Ecofisiologia vegetal, 3rd edn. Ed. Rima, São Carlos, p 550Google Scholar
  19. Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103(4):543–549CrossRefGoogle Scholar
  20. Li C (1998) Some aspects of leaf water relations in four provenances of Eucalyptus microtheca seedlings. For Ecol Manag 111(2–3):303–308CrossRefGoogle Scholar
  21. Li C, Berninger F, Koskela J, Sonninen E (2000) Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin. Aust J Plant Physiol 27(3):231–238Google Scholar
  22. Marenco RA, Lopes NF (2007) Fisiologia vegetal: fotossíntese, respiração, relações hídricas e nutrição mineral. Editora UFV, Viçosa, p 469Google Scholar
  23. Mora AL, Garcia CH (2000) A Cultura do Eucalipto no Brasil—eucalypt cultivation in Brazil. Ed. Sociedade Brasileira de Silvicultura, São Paulo, p 112Google Scholar
  24. Nautiyal S, Badola HK, Pal M, Negi DS (1994) Plant responses to water stress: changes in growth dry matter production, stomatal frequency and leaf anatomy. Biol Plant 36:91–97CrossRefGoogle Scholar
  25. Navarrete-Campos D, Bravo LA, Rubilar RA, Emhart V, Sanhueza R (2013) Drought effects on water use efficiency, freezing tolerance and survival of Eucalyptus globulus and Eucalyptus globulus × nitens cuttings. New For 44(1):119–134CrossRefGoogle Scholar
  26. Ngugi MR, Doley D, Hunt MA, Dart P, Ryan P (2003) Leaf water relations of Eucalyptus cloeziana and Eucalyptus argophloi ain response to water deficit. Tree Physiol 23:335–343CrossRefGoogle Scholar
  27. Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293CrossRefGoogle Scholar
  28. O’Grady AP, Worledgeb D, Battagliab M (2008) Constraints on transpiration of Eucalyptus globules in southern Tasmania, Australia. Agric For Meteorol 148:453–465CrossRefGoogle Scholar
  29. Pereira AR, Angelocci LR, Sentelhas PC (2002) Agrometeorologia: fundamentos e aplicações práticas. Ed. Agropecuária, Guaíba, p 478Google Scholar
  30. Shvaleva AL, Costa e Silva F, Breia E, Jouve J, Hausman JF, Almeida MH, Maroco JP, Rodrigues ML, Pereira JS, Chaves MM (2006) Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiol 26:239–248CrossRefGoogle Scholar
  31. Taiz L, Zeiger E (2013) Fisiologia Vegetal, 5th edn. Ed. Artmed, Piracicaba, p 918Google Scholar
  32. Tatagiba SD, Pezzopane JEM, dos Reis EF, Dardengo MCJD, Effgen TAM (2007) Comportamento fisiológico de dois clones de Eucalyptus na época seca e chuvosa. Cerne 13:149–159Google Scholar
  33. Tatagiba SD, Pezzopane JEM, dos Reis EF (2008a) Relações hídricas e trocas gasosas na seleção precoce de clones de eucalipto para ambientes com diferenciada disponibilidade de água no solo. Floresta 38:387–400CrossRefGoogle Scholar
  34. Tatagiba SD, Pezzopane JEM, Reis EF, Penchel RM (2008b) Variabilidade diurna e sazonal das trocas gasosas e do potencial de água das folhas de clones de Eucalyptus. Rev Eng Agric 16(2):225–237Google Scholar
  35. Thomas DS, Eamus D, Shanahan S (2000) Influence of season, drought and xylem ABA on stomatal responses to leaf-to-air vapour pressure difference of trees of the Australian wet-dry tropics. Aust J Bot 48:143–151CrossRefGoogle Scholar
  36. Tonello KC, Teixeira Filho J (2011) Mudança de escala da transpiração foliar e condutância estomática de dois clones de Eucalyptus grandis x Eucalyptus urophylla em função de variáveis ambientais. Sci For 39(90):253–264Google Scholar
  37. Tonello KC, Teixeira Filho J (2012) Ecofisiologia de três espécies arbóreas nativas da mata Atlântica do Brasil em diferentes regimes de água. Irriga 17:85–101CrossRefGoogle Scholar
  38. Vellini ALT, de Paula NF, da Costa Aguiar Alves PL, Pavani LC, Bonine CAV, Scarpinati EA, de Paula RC (2008) Respostas fisiológicas de diferentes clones de eucalipto sob diferentes regimes de irrigação. Rev Árvore 32:651–663CrossRefGoogle Scholar
  39. Villar E, Klopp C, Noirot C, Novaes E, Kirst M, Plomion C, Gion JM (2011) RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus. BMC Genom 12(538):1–18Google Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Talita Miranda Teixeira Xavier
    • 1
    Email author
  • José Eduardo Macedo Pezzopane
    • 1
  • Ricardo Miguel Penchel
    • 2
  • José Ricardo Macedo Pezzopane
    • 3
  1. 1.Departamento de Ciências Florestais e da MadeiraUniversidade Federal do Espírito SantoVitóriaBrazil
  2. 2.Fibria Celulose S.AJacareíBrazil
  3. 3.Embrapa Pecuária SudesteSão PauloBrazil

Personalised recommendations