Representative heights for assessing whole-tree values of cell-type proportions in Eucalyptus camaldulensis and E. globulus
- 25 Downloads
Abstract
Eucalyptus camaldulensis Dehnh. and E. globulus Labill. are economically important species for wood and pulpwood materials. Representative heights for assessing whole-tree values of cell-type proportions (vessels, fibers, ray and axial parenchyma percentages) using increment cores were examined by analysis of within-tree variations. Pattern differences were evaluated between trees and species in both radial and axial directions by statistical data analysis (Moses test). In E. camaldulensis, within-tree variation of vessel percentage was generally higher in the upper and outer regions of the trunk. In contrast, E. globulus within-tree variation was unclear. In both species, although no clear pattern of fiber percentages was observed, within-tree variations of ray and axial parenchyma levels were higher in the lower and inner regions. Significant differences in patterns were observed in the axial variation between species for vessel percentages and in the radial variation between trees of E. camaldulensis for ray parenchyma percentages. The representative heights for assessing whole-tree cell-type proportions were 0.8 m above the ground for E. camaldulensis and 2.8 m for E. globulus, regardless of differences in tree height and pattern of within-tree variation of cell-type proportions.
Keywords
Eucalyptus Cell-type proportion Within-tree variation Representative height Quality breedingNotes
Acknowledgements
The authors appreciate the Department of Conservation and Land Management (Western Australia) for sample supplements and Mr. K. Adachi, Faculty of Agriculture, Utsunomiya University, Japan, for his assistance with measurements.
References
- Albaugh JM, Dye PJ, King JS (2013) Eucalyptus and water use in South Africa. Int J For Res 2013:1–11. https://doi.org/10.1155/2013/852540 Google Scholar
- Alves ES, Longui EL, Amano E (2008) Pernambuco wood (Caesalpinia echinata) used in the manufacture of bows for string instruments. IAWA J 29(3):323–335. https://doi.org/10.1163/22941932-90000190 CrossRefGoogle Scholar
- Amidon TE (1981) Effect of the wood properties of hardwoods on kraft paper properties. Tappi 64(3):123–126Google Scholar
- Bendtsen BA (1978) Properties of wood from improved and intensively managed trees. For Prod J 28(10):61–72Google Scholar
- Chowdhury MQ, Ishiguri F, Hiraiwa T, Matsumoto K, Takashima Y, Iizuka K, Yokota S, Yoshizawa N (2012) Variation in anatomical properties and correlations with wood density and compressive strength in Casuarina equisetifolia growing in Bangladesh. Aust For 75(2):95–99. https://doi.org/10.1080/00049158.2012.10676390 CrossRefGoogle Scholar
- Colley J (1973) The influence of vessel elements on the picking tendency of eucalypt pulps. Paper Technol 14(5):293–296Google Scholar
- Colley J, Ward J (1976) Studies on the vessel picking tendency of Eucalyptus deglupta kraft pulp. Appita 29(5):344–348Google Scholar
- Denne MP, Hale MD (1999) Cell wall and lumen percentages in relation to wood density of Nothofagus nervosa. IAWA J 20(1):23–36. https://doi.org/10.1163/22941932-90001544 CrossRefGoogle Scholar
- Downes G, Hudson I, Raymond C, Dean G, Michell T, Schimleck L, Evans R, Muneri A (1997) Sampling plantation eucalypts for wood and fibre properties. CSIRO Publications, Melbourne, p 144Google Scholar
- Henry RJ (2014) Genetics, genomics and breeding of eucalypts. CRC Press, Boca Raton, p 205CrossRefGoogle Scholar
- Hillis WE (1978) Wood quality and utilization. In: Hillis WE, Brown AG (eds) Eucalyptus for wood production. CSIRO Publications, Melbourne, pp 259–289Google Scholar
- Hillis WE (1990) Fast growing eucalypts and some of their characteristics. In: Werner D, Muller P (eds) Fast growing trees and nitrogen fixing trees. Gustav Fischer Verlag, Stuttgart, pp 184–193Google Scholar
- Hudson I, Wilson L, Van Beveren K (1998) Vessel and fibre property in Eucalyptus globulus and Eucalyptus nitens: some preliminary results. IAWA J 19(2):111–130. https://doi.org/10.1163/22941932-90001514 CrossRefGoogle Scholar
- Hudson I, Wilson L, Van Beveren K (2001) Between species differences in whole tree maps of fibre properties in E. nitens and E. globulus—utility of control deviation charts to assess optimal sampling height. Appita J 54(2):182–189Google Scholar
- Igartua DV, Monteoliva SE, Monterubbianesi MG, Villegas MS (2003) Basic density and fibre length at breast height of Eucalyptus globulus ssp. globulus for parameter prediction of the whole tree. IAWA J 24(2):173–184. https://doi.org/10.1163/22941932-90000330 CrossRefGoogle Scholar
- Ismail J, Jusoh MZ, Sahri MH (1995) Anatomical variation in planted kelempayan (Neolamarckia cadamba, Rubiaceae). IAWA J 16(3):227–287. https://doi.org/10.1163/22941932-90001411 CrossRefGoogle Scholar
- Jorge F, Quilhó T, Pereira H (2000) Variations of fibre length in wood and bark in Eucalyptus globulus. IAWA J 21(1):41–48. https://doi.org/10.1163/22941932-90000235 CrossRefGoogle Scholar
- Leal S, Pereira H, Grabner M, Wimmer R (2003) Clonal and site variation of vessels in 7-year-old Eucalyptus globulus. IAWA J 24(2):185–195. https://doi.org/10.1163/22941932-90000331 CrossRefGoogle Scholar
- Malan FS (1988) Genetic variation in some growth and wood properties among 18 full-sib families of South African grown Eucalyptus grandis: a preliminary investigation. S Afr For J 146(1):38–43. https://doi.org/10.1080/00382167.1988.9630357 Google Scholar
- Malan FS (1991) Variation, association and inheritance of juvenile wood properties of Eucalyptus grandis Hill ex Maiden with special reference to the effect of rate of growth. S Afr For J 157(1):16–23. https://doi.org/10.1080/00382167.1991.9629094 Google Scholar
- Malan FS, Gerischer GFR (1987) Wood property differences in South African grown Eucalyptus grandis trees of different growth stress intensity. Holzforschung 41(6):331–335. https://doi.org/10.1515/hfsg.1987.41.6.331 CrossRefGoogle Scholar
- Malan FS, Hoon M (1992) Effect of initial spacing and thinning on some wood properties of Eucalyptus grandis. S Afr For J 163(1):13–20. https://doi.org/10.1080/00382167.1992.9629362 Google Scholar
- Malan FS, Male JR, Venter JSM (1994) Relationship between the properties of eucalyptus wood and some chemical, pulp and paper properties. Pap S Afr 2:6–16Google Scholar
- McKenzie HM, Shelbourne CJA, Kimberley MO, McKinley RS, Britton RAJ (2003) Processing young plantation-grown Eucalyptus nitens for solid-wood products. 2: Predicting product quality from tree, increment core, disc, and 1-m billet properties. NZ J For Sci 33(1):79–113Google Scholar
- Moses LE (1952) A two-sample test. Psychometrika 17(3):239–247. https://doi.org/10.1007/BF02288755 CrossRefGoogle Scholar
- Muneri A, Asada T, Tomita K, Kusunoki K, Szota C (2011) Between-tree variation in stem volume, wood density, fibre length and kraft pulping properties of’ Eucalyptus globulus and the utility of field-portable NIR spectroscopy and wood cores in evaluating pulpwood quality properties of standing trees. Appita J 64(4):356Google Scholar
- Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J et al (2014) The genome of Eucalyptus grandis. Nature 510:356–362. https://doi.org/10.1038/nature13308 CrossRefGoogle Scholar
- Nicholls JWP, Phillips FH (1970) Preliminary study of coppice-grown Eucalyptus viminalis as a source chip materials. Technical papers. No. 58, Division of Forest Products, CSIRO, Melbourne, AustraliaGoogle Scholar
- Nolan G, Washusen R, Jennings S, Greaves B, Parsons M (2005) Eucalypt plantations for solid wood products in Australia—a review. Project no. PN04.3002, Forest and Wood Products Research and Development Corporation, Melbourne, AustraliaGoogle Scholar
- Ogata Y (1978) Studies of vessel elements on Eucalyptus woods. Part 2. Sheetforming studies and chemical analysis of Eucalyptus vessel elements. Jpn Tappi 32(6):377–386CrossRefGoogle Scholar
- Ohshima J, Yokota S, Yoshizawa N, Ona T (2004) Within-tree variation of vessel morphology and frequency and representative heights for estimating the whole-tree value in Eucalyptus camaldulensis and E. globulus. Appita J 57(1):64–69Google Scholar
- Ohshima J, Yokota S, Yoshizawa N, Ona T (2005a) Examination of within-tree variations and the heights representing whole-tree values of derived wood properties for quasi-non-destructive breeding of Eucalyptus camaldulensis and Eucalyptus globulus as quality pulpwood. J Wood Sci 51(2):102–111. https://doi.org/10.1007/s10086-004-0625-3 CrossRefGoogle Scholar
- Ohshima J, Yokota S, Yoshizawa N, Ona T (2005b) Representative heights for assessing whole-tree values and the within-tree variations of derived wood properties in Eucalyptus camaldulensis and E. globulus. Wood Fiber Sci 37(1):51–65. https://doi.org/10.1007/s10086-004-0625-3 Google Scholar
- Ona T, Sonoda T, Ito K, Shibata M, Tamai Y, Kojima Y (1996) Use of the radially divided increment core method to assess pulpwood quality for eucalypt breeding in E. camaldulensis and E. globulus. Appita J 49(5):325–331Google Scholar
- Ona T, Sonoda T, Ito K, Shibata M, Tamai Y, Kojima Y, Ohshima J, Yokota S, Yoshizawa N (2001) Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree variations. Wood Sci Technol 35(3):229–243. https://doi.org/10.1007/s002260100090 CrossRefGoogle Scholar
- Palermo GDM, Latorraca JDF, de Carvalho AM, Calonego FW, Severo ETD (2015) Anatomical properties of Eucalyptus grandis wood and transition age between the juvenile and mature woods. Eur J Wood Prod 73(6):775–780. https://doi.org/10.1007/s00107-015-0947-4 CrossRefGoogle Scholar
- Pirralho M, Flores D, Sousa VB, Quilhó T, Knapic S, Pereira H (2014) Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Ind Crop Prod 54:327–334. https://doi.org/10.1016/j.indcrop.2014.01.040 CrossRefGoogle Scholar
- R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 5 Jan 2015
- Ramírez M, Rodríguez J, Peredo M, Valenzuela S, Mendonça R (2009) Wood anatomy and biometric parameters variation of Eucalyptus globulus clones. Wood Sci Technol 43(1):131–141. https://doi.org/10.1007/s00226-008-0206-5 CrossRefGoogle Scholar
- Rao RV, Shashikala S, Sreevani P, Kothiyal V, Sarma CR, Lal P (2002) Within tree variation in anatomical properties of some clones of Eucalyptus tereticornis Sm. Wood Sci Technol 36(3):271–285. https://doi.org/10.1007/s00226-002-0139-3 CrossRefGoogle Scholar
- Raymond CA (2002) Genetics of Eucalyptus wood properties. Ann For Sci 59(5–6):525–531. https://doi.org/10.1051/forest:2002037 CrossRefGoogle Scholar
- Raymond CA, Schimleck LR, Muneri A, Michell AJ (2001) Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using near infrared reflectance analysis. Wood Sci Technol 35(3):203–215. https://doi.org/10.1007/s002260100092 CrossRefGoogle Scholar
- Sardinha RMA, Hughes JF (1979) Wood properties variation of Eucalyptus saligna Sm. from Angola. Anais doinstituto Superior de Agronomia, Univ. Tecnica de Lisboa 37:81–101Google Scholar
- Sato S (2007) Breeding strategy for the pulp quality improvement in Eucalyptus trees. Jpn Tappi J 61(1):79–83CrossRefGoogle Scholar
- Schimleck LR, Rezende GD, Demuner BJ, Downes GM (2006) Estimation of whole-tree wood quality traits using near infrared spectra from increment cores. Appita J 59(3):231–236Google Scholar
- Tarrés Q, Pellicer N, Balea A, Merayo N, Negro C, Blanco A, Delgado-Aguilar M, Mutjé P (2017) Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags. Int J Biol Macromol 105:664–670. https://doi.org/10.1016/j.ijbiomac.2017.07.092 CrossRefGoogle Scholar
- Taylor FW (1973a) Anatomical wood properties of South African grown Eucalyptus grandis. S Afr For J 84:20–24. https://doi.org/10.1080/00382167.1973.9629286 Google Scholar
- Taylor FW (1973b) Variations in the anatomical properties of South African grown Eucalyptus grandis. Appita 27(3):171–178Google Scholar
- Taylor FW, Wooten TE (1973) Wood property variation of Mississippi delta hardwoods. Wood Fiber Sci 5(1):2–13Google Scholar
- Uetimane E Jr, Ali AC (2011) Relationship between mechanical properties and selected anatomical features of ntholo (Pseudolachnostylis maprounaefolia). J Trop For Sci 23(2):166–176Google Scholar
- Vurdu H, Bensend DW (1980) Proportions and types of cells in stems, banches, and roots of European black alder (Alnus glutinosa L. Gaertn.). Wood Sci 13(1):36–40Google Scholar
- Washusen R (2011) Processing plantation grown Eucalyptus globulus and Eucalyptus nitens for solid wood products—is it viable? Technical report no. 209, Cooperative Research Centre for Forestry, Hobart, AustraliaGoogle Scholar
- Wu YQ, Hayashi K, Liu Y, Cai Y, Sugimori M (2006) Relationships of anatomical characteristics versus shrinkage and collapse properties in plantation-grown eucalypt wood from China. J Wood Sci 52(3):187–194. https://doi.org/10.1007/s10086-005-0751-6 CrossRefGoogle Scholar
- Zhang SY, Zhong Y (1992) Structure–property relationship of wood in East-Liaoning oak. Wood Sci Technol 26(2):139–149. https://doi.org/10.1007/BF00194469 CrossRefGoogle Scholar
- Zobel BJ, van Buijtenen JP (1989) Wood variation: its causes and control. Springer, Berlin, p 363CrossRefGoogle Scholar