Journal of Forestry Research

, Volume 29, Issue 6, pp 1489–1496 | Cite as

Free amino acid content in trunk, branches and branchlets of Araucaria angustifolia (Araucariaceae)

  • Crizane HackbarthEmail author
  • Patrícia Soffiatti
  • Flávio Zanette
  • Eny Iochevet Segal Floh
  • Amanda Ferreira Macedo
  • Henrique Aparecido Laureano
Original Paper


Araucaria angustifolia (Bertol.) O. Kuntze exhibits dimorphism in its stem structure, where the trunk is orthotropic and branches and branchlets (primary and secondary branches) are plagiotropic. These stems exhibit different behavior when used for vegetative propagation, and only segments of trunk can form a complete plant. The physiological and biochemical mechanisms that characterize these stems are still little known. The aim of this study was to describe the free amino acid profiles in trunks, branches, and branchlets of A. angustifolia. Segments of 5 cm in length were excised from young individuals below the stem apex. The needles were removed and samples were frozen and lyophilized. The determinations were made by high-performance liquid chromatography, and the results were expressed as µg/g fresh weight (FW). The trunks and branches had the highest content of total amino acids, which were 112.23 ± 20.57 µg/g FW and 111.97 ± 27.78 µg/g FW, respectively. The amino acids—glutamine, aspartate and γ-aminobutyric acid and tyrosine—were noticeably higher in the three types of stems. In the trunk, a higher amount of asparagine and tryptophan, was also detected. Glutamic acid and glutamine were found in higher quantities in the branches. The branchlets had very low total amino acid content (30.79 ± 4.19 µg/g FW), wherein asparagine is the only amino acid not detected. Thus, it was observed that the profile of the free amino acid differs among trunks, branches, and branchlets in A. angustifolia, indicating that they perform different functions.


Brazilian pine Physiological mechanisms Stem’s dimorphism Free amino acids 

Supplementary material

11676_2017_581_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1583 kb)


  1. Assumpção Neto A (2008) Plastocromo e filocromo aparente anual em Araucaria angustifolia (Bert.) O. Ktze, no município de Colombo-PR. Dissertation (Mestrado em Agronomia)—Programa de Pós-Graduação em Agronomia, Federal University of Paraná. 55fGoogle Scholar
  2. Astarita LV, Floh EIS, Handro W (2003a) Changes in IAA, tryptophan and activity of soluble peroxidase associated with zygotic embryogenesis in Araucaria angustifolia (Brazilian pine). Plant Growth Regul 39(2):113–118. CrossRefGoogle Scholar
  3. Astarita LV, Floh EIS, Handro W (2003b) Free amino acid, protein and water content changes associate with seed development in Araucaria angustifolia. Biol Plant 47(1):53–59. CrossRefGoogle Scholar
  4. Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid methabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162. CrossRefPubMedGoogle Scholar
  5. Caidan R, Cairang L, Liu B, Suo YR (2014) Amino acid, fatty acid, and mineral compositions of fruit, stem, leaf and root of Rubus amabilis from the Qinghai-Tibetan Plateau. J Food Compos Anal 33:26–31. CrossRefGoogle Scholar
  6. Cánovas FM, Avila C, Cantón FR, Cañas RA, de la Torre F (2007) Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot 58(9):2307–2318. CrossRefPubMedGoogle Scholar
  7. Carvalho A, Krug CA, Mendes JET (1950) O dimorfismo dos ramos em Coffea arabica L. Bragantia 10(6):151–159CrossRefGoogle Scholar
  8. Constantino V (2017) Nutrição de mudas e morfogênese na enxertia de Araucaria angustifolia (Bert.) O. Kuntze. Thesis, Federal University of ParanáGoogle Scholar
  9. Coruzzi G, Last R (2000) Amino acids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 358–410Google Scholar
  10. Durzan DJ (1967) Nitrogen metabolism of Piceae gluaca I. Seasonal changes of free amino acids in buds, shoot apices, and leaves, and the metabolism of uniformly labeled 14C-l-Arginine by buds during the onset of dormancy. Can J Bot 46:909–919CrossRefGoogle Scholar
  11. Elbl P, Lira BS, Andrade SCS, Jo L, Santos ALWD, Coutinho LL, Floh EIS, Rossi M (2014) Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine: Araucaria angustifolia (Bert.) Kuntze. Plant Cell, Tissue Organ Cult 120:903–915. CrossRefGoogle Scholar
  12. Fagard M, Launay A, Clement G, Courtial J, Dellagi A, Farjad M, Krapp A, Soulié MC, Masclaux-Daubresse C (2014) Nitrogen metabolism meets phytopathology. J Exp Bot 65:5643–5656. CrossRefPubMedGoogle Scholar
  13. Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19. CrossRefPubMedGoogle Scholar
  14. Flores-Rentería L, Molina-Freaner F, Whipple AV, Gehring CA, Domínguez CA (2013) Sexual stability in the nearly dioecious Pinus johannis (Pinaceae). Am J Bot 100(3):602–612. CrossRefPubMedGoogle Scholar
  15. Galili G, Avin-Wittenberg T, Angelovici R, Fernie AR (2014) The role of photosynthesis and amino acid metabolism in the energy status during seed development. Front Plant Sci 5:447. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gallardo F, Fu JM, Jing ZP, Kirby EG, Caovas FM (2003) Genetic modification of amino acid metabolism in woody plants. Plant Physiol Biochem 41:587–594CrossRefGoogle Scholar
  17. Gu LP, Jones AD, Last RL (2010) Broad connections in the Arabidopsis seed metabolic network 322 revealed by metabolite profiling of an amino acid catabolism mutant. Plant J 61:579–590. CrossRefPubMedGoogle Scholar
  18. Haines RJ, Fossard RA (1977) Propagation of hoop pine (Araucaria cunninghamii AIT.). Acta Hort 78:297–300CrossRefGoogle Scholar
  19. Hasan HMI, El-Mehdawy MF, Saad EK (2014) Amino acid contents of leaves and stems for three types of herbal plants at Al-Gabal Al-Akhder Region. World J Chem 9(1):15–19. CrossRefGoogle Scholar
  20. Häusler RE, Ludewig F, Krueger S (2014) Amino acids—a life between metabolism and signaling. Plant Sci 229:225–237. CrossRefPubMedGoogle Scholar
  21. Hildebrandt TM, Nesi AN, Araújo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8(11):1563–1579. CrossRefPubMedGoogle Scholar
  22. Iritani C, Zanette F, Cislinski J (1992) Aspectos anatômicos da cultura in vitro da Araucaria angustifolia. I. Organização e desenvolvimento dos meristemas axilares ortotrópicos de segmentos caulinares. Acta Biol Parana 21(1–4):57–76Google Scholar
  23. Kageyama PY, Ferreira M (1975) Propagação vegetativa por enxertia Araucaria angustifolia (Bert) O. Ktze. Instituto de Pesquisas de Estudos Florestais 12:95–102Google Scholar
  24. Kim YT, Glerum C (1995) Seasonal free amino acids fluctuations in red pine and white spruce needles. Can J For Rea 25:697–703. CrossRefGoogle Scholar
  25. Kinnersley AM, Lin F (2000) Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regul 32:65–76. CrossRefGoogle Scholar
  26. Krübel L, Junemann J, Wirtz M, Birke H, Thornton JD, Browning LW, Poschet G, Hell R, Balk J, Braun HP, Hildebrandt TM (2014) The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis. Plant Physiol 165:92–104. CrossRefGoogle Scholar
  27. Lam HM, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh MH, Coruzzi G (1995) Use of Arabidopsis mutants and genes to study amino acid biosynthesis. Plant Cell 7:887–898CrossRefGoogle Scholar
  28. Lamote CE, Pickard BG (2004) Control of gravitropic orientation. II Dual receptor model for gravitropism. Funct Plant Biol 31:109–120. CrossRefGoogle Scholar
  29. Lea PJ, Sodek L, Parry MAJ, ShewryPR HalfordNG (2006) Asparagine in plants. Ann Appl Biol 150(1):1–26. CrossRefGoogle Scholar
  30. Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63(8):2853–2872. CrossRefPubMedGoogle Scholar
  31. McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374. CrossRefPubMedGoogle Scholar
  32. Moyle RL, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid Aspen. Plant J 31:675–685. CrossRefPubMedGoogle Scholar
  33. Muday GK (2001) Auxins and tropisms. J Plant Growth Regul 20(3):226–243. CrossRefPubMedGoogle Scholar
  34. Noctor G, Novitskaya L, Lea PJ, Foyer CH (2002) Co-ordination of leaf minor acid contentes in crop species: significance and interpretation. J Exp Bot 53(370):939–945. CrossRefPubMedGoogle Scholar
  35. Oliveira LS (2011) Enxertia, microenxertia e descrição do tropismo em Araucaria angustifolia (Bert.) O. Kuntz. Thesis, Federal University of ParanáGoogle Scholar
  36. Oliveira IC, Brenner E, Chiu J, Hsieh MH, Kouranov A, Lam HM, Shin MJ, Coruzzi G (2001) Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway. Braz J Med Biol Res 34:567–575. CrossRefPubMedGoogle Scholar
  37. Oliveira IP, Oliveira LC, Moura CSFT (2010) Cultura do café: histórico, classificação e fases de crescimento. Revista Faculdade Montes Belos 5(3):17–32Google Scholar
  38. Pereira GP, Zanette F, Biasi LA, de Carvalho RIN (2016) Atividade respiratória de meristemas apicais de ramos plagiotrópicos de Araucaria angustifolia (Bert.) O. Kuntze. Ciência Florestal 26(1):203–211. CrossRefGoogle Scholar
  39. Rodriguez C, Frias J, Vidal-Valverde C (2008) Correlation between some fractions, lysine, histidine, tyrosine and ornithine contents during the germination of peas, beans and lentils. Food Chem 108:245–252. CrossRefGoogle Scholar
  40. Steiner N, Santa-Catarina C, Andrade JBR, Balbuena TS, Guerra MP, Handro W, Floh EIS, Silveira V (2008) Araucaria angustifolia biotechnology. Funct Plant Sci Biotechnol 2:20–28Google Scholar
  41. Van Heerden PS, Towers GH, Lewis NG (1996) Nitrogen metabolism in lignifying Pinus taeda cell cultures. J Biol Chem 271:12350–12355. CrossRefPubMedGoogle Scholar
  42. Veierskov B, Rasmussen HN, Eriksen B, Hansen-Møller J (2006) Plagiotropism and auxin in Abies nordmanianna. Tree Physiol 27(1):149–153CrossRefGoogle Scholar
  43. Wendling I (2011) Enxertia e florescimento precoce em Araucaria angustifolia. Embrapa Florestas, ColomboGoogle Scholar
  44. Wu GY, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol 440:177–189. CrossRefPubMedGoogle Scholar
  45. Zanette F, Oliveira LS, Biasi LA (2011) Grafting of Araucaria angustifolia (Bertol.) Kuntze through the four seasons of the year. Revista Brasileira de Fruticultura 33(4):1364–1370. CrossRefGoogle Scholar
  46. Zanette F, Danner MA, Constantino V, Wendling I (2017) Particularidades e biologia reprodutiva de Araucaria angustifolia. In: Wendling I, Zanette F (eds) Araucária: particularidades, propagação e manejo de plantios. Embrapa, Brasília, pp 15–39Google Scholar
  47. Zeier J (2013) New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell Environ 36:2085–2103. CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Crizane Hackbarth
    • 1
    Email author
  • Patrícia Soffiatti
    • 2
  • Flávio Zanette
    • 1
  • Eny Iochevet Segal Floh
    • 3
  • Amanda Ferreira Macedo
    • 3
  • Henrique Aparecido Laureano
    • 4
  1. 1.Departamento de Fitotecnia e FitossanitarismoFederal University of Paraná (UFPR)CuritibaBrazil
  2. 2.Departamento de BotânicaFederal University of Paraná (UFPR)CuritibaBrazil
  3. 3.Instituto de BiociênciasUniversity of São PauloSão PauloBrazil
  4. 4.Departamento de EstatísticaFederal University of Paraná (UFPR)CuritibaBrazil

Personalised recommendations