Variation and selection analysis of Pinus koraiensis clones in northeast China

  • Deyang Liang
  • Changjun Ding
  • Guanghao Zhao
  • Weiwei Leng
  • Min Zhang
  • Xiyang Zhao
  • Guanzheng Qu
Original Paper

Abstract

Understanding genetic variation is important for efficiently selecting excellent clones and utilizing genetic resources during tree breeding. We investigated 16 growth traits of 50 32-year-old Pinus koraiensis clones. Analyses of variance showed that all the test traits differed significantly among clones. Average height, diameter at breast height (DBH), and volume of all clones were 10.41 m, 21.30 cm, and 0.148 m3, respectively. Phenotypic coefficients of variation and repeatabilities of traits ranged from 4.37 to 48.03% and from 0.013 to 0.900, respectively. There exists significant positive correlations among heights, diameter at different heights (1.3, 3.0, 5.0 m), and volumes; genetic correlation was close to phenotype correlation. Using four growth traits (height, DBH, volume, average crown width) as indices for a comprehensive evaluation, five clones (PK 11, PK 19, PK 04, PK 14, and PK 28), whose traits scored in the top 10%, were selected as elite clones. For these clones, genetic gains in height, DBH, volume and crown height were 8.58, 13.02, 32.72 and 3.83%, respectively. These results provide important information for improving P. koraiensis breeding programs.

Keywords

Genetic variation Replication Selection Pinus koraiensis 

References

  1. Asset G, Staels B, Wolff RL, Bauge E, Madj Z, Fruchart JC, Dallongeville J (1999) Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat. Lipids 34(1):39–44CrossRefPubMedGoogle Scholar
  2. Bi CX, Guo JZ, Wang HW, Shu QY (2000) The correlation and path analysis on the quantity characters of Chinese pine. J Northwest For Univ 15(2):7–12Google Scholar
  3. Bulmer M (1971) The effect of selection on genetic variability. Am Nat 105(943):201–211CrossRefGoogle Scholar
  4. Camille L, Jean-Pierre R, Audrey G, Christophe G, François B, François H, Denilson Luc H, Christophe P (2011) Genetic parameters of growth, straightness and wood chemistry traits in Pinus pinaster. Ann For Sci 68(4):873–884CrossRefGoogle Scholar
  5. Chen MG (2012) Research on seedling fast propagation and multi-traits comprehensive selection in Alnus formosana clones. Doctor’s Theses of Central South University of Forestry and TechnologyGoogle Scholar
  6. Dean CA, Cotterill PP, Cameron JN (1983) Genetic parameters and gains expected from multiple trait selection of radiata pine in eastern Victoria. Aust For Res 13:271–278Google Scholar
  7. El-Soda M, Malosetti M, Zwaan BJ, Koorneef M, Aarts MG (2014) Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci 19(6):390–398CrossRefPubMedGoogle Scholar
  8. Francisco F, Messias G, Helaine C, Pedro C, Telma N, Ana P, Alexandre P, Geraldo A (2008) Selection and estimation of the genetic gain in segregating generations of papaya (Carica papaya L.). Crop Breed Appl Biotechnol 8:1–8CrossRefGoogle Scholar
  9. Fries A (2012) Genetic parameters, genetic gain and correlated responses in growth, fiber dimensions and wood density in a Scots pine breeding population. Ann For Sci 69:783–794CrossRefGoogle Scholar
  10. Goli AH, Barzegar M, Sahari MA (2005) Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) putamina extracts. Food Chem 92:521–525CrossRefGoogle Scholar
  11. Gort J, Zubizarreta-Gerendiain A, Peltola H, Kilpelainen A, Pulkkinen P, Jaatinen R, Kellomaki S (2010) Differences in branch characteristics of Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing. Ann For Sci 67(701–705):708Google Scholar
  12. Guan LH, Pan HX, Huang MR, Shi JS (2005) Research on growth and wood properties joint genetic improvement of new clones of Poplus deltoides (I-69) × P. euramericana (I-45). J Nanjing For Univ 29(2):6–10Google Scholar
  13. Guo RD (2013) Study on pedigree breeding for the superior families of Fraxinus mandshurica on the base of multi-trait. Master’s Thesis of Theses Northeast Forestry UniversityGoogle Scholar
  14. Guo LX (2014) Optimal selection and comprehensive characteristic evaluation of walnut (Juglans regia) in Shangluo from Shanxi province. Master’s Thesis of Northwest Agriculture and Forestry UniversityGoogle Scholar
  15. Hai PH, Jansson G, Harwood C, Hannrup B, Thinh HH (2008) Genetic variation in growth, stem straightness and branch thickness in clonal trials of Acacia auriculiformis at three contrasting sites in Vietnam. For Ecol Manage 255:156–167CrossRefGoogle Scholar
  16. Han ZQ, Jiang B (2014) A study on comprehensive evaluation of the processing tomato varieties multiple traits. Sci Agric Sin 47(2):357–365Google Scholar
  17. Han SU, Kang KS, Kim TS, Song JH (2008) Effect of top-pruning in a clonal seed orchard of Pinus koraiensis. Ann For Res 51:155–156Google Scholar
  18. Hannrup B, Ekberg I, Persson A (2000) Genetic correlations among wood, growth capacity and stem traits in Pinus sylvestris. Scand J For Res 15:161–170CrossRefGoogle Scholar
  19. Hansen J, Roulund H (1997) Genetic parameters for spiral grain, stem form, pilodyn and growth in 13 years old clones of Sitka Spruce (Picea sitchensis (Bong.) Carr.). Silvae Genet 46:107–113Google Scholar
  20. Hortensia S, Jordi S, Marcos B, Ma PC, Isabel C (2011) Genetic variation and genotype-environment interactions in short rotation Populus plantations in southern Europe. New Forest 42:163–177CrossRefGoogle Scholar
  21. Isidorov VA, Vinogorova VT, Rafaowski K (2003) HS-SPME analysis of volatile organic compounds of coniferous needle litter. Atmos Environ 37:4645–4650CrossRefGoogle Scholar
  22. Isik F, Li B, Frampton J (2003) Estimates of additive, dominance and epistatic genetic variances from a clonally replicated test of loblolly pine. For Sci 49(1):77–88Google Scholar
  23. Jiang JM, Sun HQ, Liu ZX (1996) Multitraits selection of loblolly pine families for pulpwood. For Res 9(5):455–460Google Scholar
  24. Kaushik N, Deswal R, Suman M, Krishan K (2015) Genetic variation and heritability estimation in Jatropha curcas L. progenies for seed yield and vegetative traits. J Appl Nat Sci 7(2):567–573Google Scholar
  25. Kimberley MO, Moore JR, Dungey HS (2015) Quantification of realised genetic gain in radiata pine and its incorporation into growth and yield modeling systems. Can J For Res 45(12):1676–1687CrossRefGoogle Scholar
  26. Lai MF, Cui FH, Zeng XP (2001) Peanut variety characteristics of comprehensive evaluation method is discussed in this paper. Chin J Oil Crop Sci 23(1):17–21, 26Google Scholar
  27. Li Y, Dong Y, Niu SZ, Cui DQ (2007) The genetic relationship among plant-height traits found using multiple-trait QTL mapping of a dent corn and popcorn cross. Genome 50:357–364CrossRefPubMedGoogle Scholar
  28. Liu HE, Tong ZK, Liu L, Mao YC, Han YF (1994) Genetic variation and selection for wood properties in pulpwood hybrid poplar. J Zhejiang For College 11(1):1–6Google Scholar
  29. Lu ZH, Xu JM, Lu GH, Zhao RY, Li YW, Li GY (2004) Comprehensive evaluation and evaluation of multiple traits and estimation of breeding value of Eucalyptus. For Res 17(2):220–225Google Scholar
  30. Luo JR, Hu ZQ, Song W (2010) A rank-sum-difference testing method for multi-trait comprehensive ranking. Sci Agric Sin 43(10):2008–2015Google Scholar
  31. Maniee MD, Kahrizi MD, Mohammadi R (2009) Genetic variability of some morphophysiological traits in durum wheat (Triticum turgidum var. durum). J Appl Sci 9:1383–1387CrossRefGoogle Scholar
  32. Marron N, Ceulemans R (2006) Genetic variation of leaf traits related to productivity in a Populus deltoides × Populus nigra family. Can J For Res 36:390–400CrossRefGoogle Scholar
  33. Matziris D (2000) Genetic variation and realized genetic gain from Aleppo pine tree improvement. Silvae Genet 49(1):5–9Google Scholar
  34. Midgley JJ, Lawes MJ (2016) Relative bark thickness: towards standardised measurement and analysis. Plant Ecol 217:677–681CrossRefGoogle Scholar
  35. Mwase WF, Savill PS, Hemery G (2008) Genetic parameter estimates for growth and form traits in common ash (Fraxinus excelsior L.) in a breeding seedling orchard at Little Wittenham in England. New Forest 36:225–238CrossRefGoogle Scholar
  36. Ren SQ (2010) Study on Eucalypt clones for plywood superior variate selection. Master Degree Thesis of Chinese Academy of ForestryGoogle Scholar
  37. Safavi SA, Pourdad SA, Mohmmad T, Mahmoud K (2010) Assessment of genetic variation among safflower (Carthamus tinctorius L.) accessions using agro-morphological traits and molecular markers. J Food Agric Environ 8:616–625Google Scholar
  38. Sanchez-Vargas NM, Vargas-Hernandez JJ, Ruiz-Posadas LD, Lopez-Upton J (2004) Repeatability of genetic parameters in a clonal test of Eucalyptus urophylla S. T. Blake in southeastern Mexico. Agrociencia 38(4):465–475Google Scholar
  39. Shi LW (2012) Statistical analysis from entry to the master of SPSS 19.0. Tsinghua University Press, Beijing, p 105Google Scholar
  40. Son Y, Hwang JW, Kim ZS, Lee WK, Kim JS (2001) Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Biores Technol 78:251–255CrossRefGoogle Scholar
  41. Su XY, Wang ZY, Liu JR (2009) In virto and in vivo antioxidant activity of Pinus koraiensis seed extract containing phenolic compounds. Food Chem 117:681–686CrossRefGoogle Scholar
  42. Vahedi AA, Mataji A, Babayi-kafaki S, Eshaghi-rad J, Hodjati SM, Djomo A (2014) Allometric equations for predicting aboveground biomass of beech-hornbeam stands in the Hyrcanian forests of Iran. J For Sci 60(6):236–247Google Scholar
  43. Vestol GI, Colin F, Loubere M (1999) Influence of progeny and initial stand density on the relationship between diameter at breast height and knot diameter of Picea abies. Scand J For Res 14:470–480CrossRefGoogle Scholar
  44. Wang HM, Xia DA, Wang WJ, Yang SW (2002) Genetic variations of wood properties and growth characters of Korean pines from different provenances. J For Res 13(4):277–280CrossRefGoogle Scholar
  45. White TL, Hodge GR (1988) Best linear prediction of breeding values in forest tree improvement program, vol 76(5). Kluwer Academic Publishers, Dordrecht, pp 719–727Google Scholar
  46. Wood ER, Bullock BP, Isik F, Mckeand SE (2015) Variation in stem taper and growth traits in a clonal trial of loblolly pine. For Sci 61(1):76–82Google Scholar
  47. Xu JR (2006) Quantitative genetics of forest. China Forestry Publishing, Beijing, pp 17–18Google Scholar
  48. Xu DY, Yan H (2001) A study of the impacts of climate change on the geographic distribution of Pinus koraiensis in China. Environ Int 27:201–205CrossRefPubMedGoogle Scholar
  49. Yang XY, Ji KS (2004) Early selection in forest tree improvement. World For Res 17(2):6–8Google Scholar
  50. Yang X, Ding Y, Sun Z, Zhang D (2005) Studies on chemical constituents of Pinus armandii. Acta Pharm Sin 40:435Google Scholar
  51. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353CrossRefGoogle Scholar
  52. Zhang Z, Zhang HG, Zhou Y (2015) Variation of seed characters in Korean pine (Pinus koraiensis) multi-clonal populations. J Beijing For Univ 37(2):67–78Google Scholar
  53. Zhao XY, Bian XY, Liu MR, Li ZX, Li Y, Zheng M, Teng WH, Jiang J, Liu GF (2014) Analysis of genetic effects on a complete diallel cross test of Betula platyphylla. Euphytica 200:221–229CrossRefGoogle Scholar
  54. Zhao XY, Xia H, Wang XW, Wang C, Liang DY, Li KL, Liu GF (2016) Variance and stability analyses of growth characters in halfsib Betula platyphylla families at three different sites in China. Euphtyica 208:173–186CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Deyang Liang
    • 1
  • Changjun Ding
    • 2
  • Guanghao Zhao
    • 3
  • Weiwei Leng
    • 3
  • Min Zhang
    • 4
  • Xiyang Zhao
    • 1
  • Guanzheng Qu
    • 1
  1. 1.State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and CultivationState Forestry AdministrationBeijingPeople’s Republic of China
  3. 3.Longjing Forestry BureauLongjingPeople’s Republic of China
  4. 4.The Graduate School of Yanbian UniversityYanbianPeople’s Republic of China

Personalised recommendations