Journal of Forestry Research

, Volume 29, Issue 2, pp 283–290 | Cite as

Optimal and synchronized germination of Robinia pseudoacacia, Acacia dealbata and other woody Fabaceae using a handheld rotary tool: concomitant reduction of physical and physiological seed dormancy

  • Nuria Pedrol
  • Carolina G. Puig
  • Antonio López-Nogueira
  • María Pardo-Muras
  • Luís González
  • Pablo Souza-Alonso
Original Paper


The Fabaceae (legume family) is one of the largest families of plants with a worldwide distribution and a major role in agriculture and in agroforestry. A hard seed coat impermeable to water is a typical feature of several species. Physical dormancy delays and reduces germination so that mechanical, physical and chemical scarification methods have been classically used to break seed dormancy of many species. We evaluate the effectiveness of a methodology to scarify seeds of several woody Fabaceae of ecological and economical importance, including Robinia pseudoacacia and Acacia dealbata and the shrubs Cytisus scoparius, C. multiflorus and Ulex europaeus. We describe the optimized use of a handheld rotary tool (HRT), and compare its effectiveness with other scarification methods reported to break dormancy such as boiling or dry heating. Total germination and/or speed of germination were enhanced after the application of the HRT, with germination percentages significantly higher than those achieved by other methods of scarification. Based on a thorough literature review, a mode of action for the HRT is suggested which could operate by breaking the physical and physiological dormancy of treated seeds through the combined action of coat abrasion and moderate temperatures. Considering these results, we recommend the application of this rapid, effective, low-cost and highly reproducible HRT method to break seed dormancy and enhance germination of these species and others with similar dormancy constraints.


Combinational dormancy Hardcoat Rotary tool Scarification Temperature 



We wish to thank the patience of Carlos Bolaño (‘our’ dear Lab Technician) during artwork elaboration (and every time), and Esther Pájaro and Iria Rodríguez-Alén for their welcome hands-on assistance.


  1. Abdallah MM, Jones RA, El-Beltagy AS (1989) A method to overcome dormancy in Scotch broom (Cytisus scoparius). Environ Exp Bot 29(4):499–505CrossRefGoogle Scholar
  2. Abudureheman B, Liu HL, Zhang DY, Guan K (2014) Identification of physical dormancy and dormancy release patterns in several species (Fabaceae) of the cold desert, north-west China. Seed Sci Res 24(2):133–145CrossRefGoogle Scholar
  3. Álvarez-Iglesias L, Puig CG, Garabatos A, Reigosa MJ, Pedrol N (2014) Vicia faba aqueous extracts and plant material can suppress weeds and enhance crops. Allelopathy J 34(2):299–314Google Scholar
  4. Añorbe M, Gómez Gutiérrez JM, Pérez Fernández MA, Fernández Santos B (1990) Influence of temperature on seed germination of Cytisus multiflorus (L´Hér.) and Cytisus oromediterraneus Riv. Mar., in Spanish. Stvdia Oecol 7(1):85–100Google Scholar
  5. Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14(1):1–16Google Scholar
  6. Bentsink L, Hanson J, Hanhart CJ, Blankestijn-De Vries H, Coltrane C, Keizer P, El-Lithy M, Alonso-Blanco C, De Andrés MT, Reymond M, Van Eeuwijk F, Smeekens S, Koornneef M (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci 107(9):4264–4269CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055–1066CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bradshaw A (1997) Restoration of mine lands using natural processes. Ecol Eng 8(4):255–269CrossRefGoogle Scholar
  9. Chaer GM, Resende AS, Campello EFC, de Faria SM, Boddey RM (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31(2):139–149CrossRefPubMedGoogle Scholar
  10. Chiapusio G, Sánchez AM, Reigosa MJ, González L, Pellissier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23(11):2445–2454CrossRefGoogle Scholar
  11. Cruz ED, de Carvalho JEU (2006) Methods of overcoming dormancy in Schizolobium amazonicum Huber ex Ducke (Leguminosae–Caesalpinioideae) seeds, in Portuguese. Rev Bras Sementes 28(3):108–115CrossRefGoogle Scholar
  12. Dapont EC, Silva JBD, Oliveira JDD, Alves CZ, Dutra AS (2014) Methods of accelerating and standardising the emergence of seedlings in Schizolobium amazonicum. Rev Cienc Agron 45(3):598–605CrossRefGoogle Scholar
  13. De Bertoldi C, De Leo M, Braca A, Ercoli L (2009) Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavone C-glycosides. Chemoecology 19(3):169–176CrossRefGoogle Scholar
  14. Doran JC (1986) Seed, nursery practice and establishment. In: Brown AG, Boland DJ, Doran JC, Martensz PN, Hall N (eds) Multipurpose Australian trees and shrubs. Lesser-known species for fuel wood and agroforestry. ACIAR, Canberra, pp 1–29Google Scholar
  15. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171(3):501–523CrossRefPubMedGoogle Scholar
  16. Ghantous KM, Sandler HA (2012) Mechanical scarification of dodder seeds with handheld rotary tool. Weed Technol 26(3):485–489CrossRefGoogle Scholar
  17. Ghassali F, Salkini AK, Petersen SL, Niane AA, Louhaichi M (2012) Germination dynamics of Acacia species under different seed treatments. Range Manag Agrofor 33(1):37–42Google Scholar
  18. Griffin AR, Midgley SJ, Bush D, Cunningham PJ, Rinaudo AT (2011) Global uses of Australian acacias—recent trends and future prospects. Divers Distrib 17(5):837–847CrossRefGoogle Scholar
  19. Hanley ME (2009) Thermal shock and germination in North-West European Genisteae: implications for heathland management and invasive weed control using fire. Appl Veg Sci 12(3):385–390CrossRefGoogle Scholar
  20. Herranz JM, Ferrandis P, Martínez Sánchez JJ (1998) Influence of heat on seed germination of seven Mediterranean Leguminosae species. Plant Ecol 136(1):95–103CrossRefGoogle Scholar
  21. ISTA, International Seed Testing Association (1999) International rules for seed testing. Seed Sci Technol 27(Suppl.):1–333Google Scholar
  22. Janzen DH (1981) Enterolobium cyclocarpum seed passage rate and survival in horses, Costa Rican pleistocene seed dispersal agents. Ecology 62(3):593–601CrossRefGoogle Scholar
  23. Kelly KM, Van Staden J, Bell WE (1992) Seed coat structure and dormancy. Plant Growth Regul 11(3):201–209CrossRefGoogle Scholar
  24. Khadduri NY, Harrington JT (2002) Shaken, not stirred–a percussion scarification technique. Native Plants J 3(1):65–66CrossRefGoogle Scholar
  25. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36CrossRefPubMedGoogle Scholar
  26. Kull CA, Shackleton CM, Cunningham PJ, Ducatillon C, Dufour-Dror JM, Esler KJ, Zylstra MJ (2011) Adoption, use and perception of Australian acacias around the world. Divers Distrib 17(5):822–836CrossRefGoogle Scholar
  27. Ligero P, de Vega A, van der Kolk JC, van Dam JEG (2011) Gorse (Ulex europæus) as a possible source of xylans by hydrothermal treatment. Ind Crops Prod 33(1):205–210CrossRefGoogle Scholar
  28. Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186(4):817–831CrossRefPubMedGoogle Scholar
  29. Lorenzo P, González L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67(1):1–11CrossRefGoogle Scholar
  30. Mayer AM, Poljakoff-Mayber A (1982) The germination of seeds. Pergamon, LondonGoogle Scholar
  31. Mondoni A, Tazzari ER, Zubani L, Orsenigo S, Rossi G (2013) Percussion as an effective seed treatment for herbaceous legumes (Fabaceae): implications for habitat restoration and agriculture. Seed Sci Technol 41(2):175–187CrossRefGoogle Scholar
  32. Nongrum A, Kharlukhi L (2013) Effect of seed treatment for laboratory germination of Albizia chinensis. J For Res 24(4):709–713CrossRefGoogle Scholar
  33. Patanè C, Gresta F (2006) Germination of Astragalus hamosus and Medicago orbicularis as affected by seed-coat dormancy breaking techniques. J Arid Environ 67(1):165–173CrossRefGoogle Scholar
  34. Peinetti R, Pereyra M, Kin A, Sosa A (1993) Effects of cattle ingestion on viability and germination rate of caldén (Prosopis caldenia) seeds. J Range Manag 46(6):483–486CrossRefGoogle Scholar
  35. Pereiras J, Puentes MA, Casal M (1985) Effect of high temperatures on gorse (Ulex europaeus L.) seed germination/Efecto de las altas temperaturas sobre la germinación de las semillas del tojo (Ulex europaeus L.), in Spanish. Stvdia Oecol 6:125–133Google Scholar
  36. Pérez S, Renedo CJ, Ortiz A, Delgado F, Fernández I (2014) Energy potential of native shrub species in northern Spain. Renew Energy 62:79–83CrossRefGoogle Scholar
  37. Pérez-Fernández MA, Calvo-Magro E, Valentine A (2016) Benefits of the symbiotic association of shrubby legumes for the rehabilitation of degraded soils under Mediterranean climatic conditions. Land Degrad Dev 27(2):395–405CrossRefGoogle Scholar
  38. Pinto PC, Oliveira C, Costa CA, Gaspar A, Faria T, Ataíde J, Rodrigues AE (2015) Kraft delignification of energy crops in view of pulp production and lignin valorization. Ind Crops Prod 71:153–162CrossRefGoogle Scholar
  39. Pleguezuelo CRR, Zuazo VHD, Bielders C, Bocanegra JAJ, PereaTorres F, Martínez JRF (2014) Bioenergy farming using woody crops. A review. Agron Sustain Dev 35(1):95–119CrossRefGoogle Scholar
  40. Richardson RG, Hill RL (1998) The biology of Australian weeds 34. Ulex europaeus L. Plant Prot Q 13(2):46–58Google Scholar
  41. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17(5):788–809CrossRefGoogle Scholar
  42. Rivas M, Reyes O, Casal M (2006) Influence of heat and smoke treatments on the germination of six leguminous shrubby species. Int J Wildland Fire 15(1):73–80CrossRefGoogle Scholar
  43. Rüdiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18(8):589–613CrossRefPubMedGoogle Scholar
  44. Sarikurkcu C, Kocak MS, Tepe B, Uren MC (2015) An alternative antioxidative and enzyme inhibitory agent from Turkey: Robinia pseudoacacia L. Ind Crops Prod 78:110–115CrossRefGoogle Scholar
  45. Sheppard AW, Hodge P, Paynter Q, Rees M (2002) Factors affecting invasion and persistence of broom Cytisus scoparius in Australia. J Appl Ecol 39(5):721–734CrossRefGoogle Scholar
  46. Sheppard AW, Shaw RH, Sforza R (2006) Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Res 46(2):93–117CrossRefGoogle Scholar
  47. Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD (2014) The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci 5:1–19Google Scholar
  48. Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA (2009) Hormonal regulation of temperature—induced growth in Arabidopsis. Plant J 60(4):589–601CrossRefPubMedGoogle Scholar
  49. Straker KC, Quinn LD, Voigt TB, Lee DK, Kling GJ (2015) Black locust as a bionergy feedstock: a review. BioEnergy Res 8(3):1117–1135CrossRefGoogle Scholar
  50. Sy A, Grouzis M, Danthu P (2001) Seed germination of seven Sahelian legume species. J Arid Environ 49(4):875–882CrossRefGoogle Scholar
  51. Tárrega R, Calvo L, Trabaud L (1992) Effect of high temperatures on seed germination of two woody Leguminosae. Vegetatio 102(2):139–147CrossRefGoogle Scholar
  52. Teketay D (1996) Germination ecology of twelve indigenous and eight exotic multipurpose leguminous species from Ethiopia. For Ecol Manag 80(1):209–223CrossRefGoogle Scholar
  53. Thanos CA, Georghiou K, Kadis C, Pantazi C (1992) Cistaceae: a plant family with hard seeds. Isr J Bot 41(4–6):251–263Google Scholar
  54. Tigabu M, Oden PC (2001) Effect of scarification, gibberellic acid and temperature on seed germination of two multipurpose Albizia species from Ethiopia. Seed Sci Technol 29(1):11–20Google Scholar
  55. Tischer S, Hübner T (2002) Model trials for phytoremediation of hydrocarbon-contaminated sites by the use of different plant species. Int J Phytorem 4(3):187–203CrossRefGoogle Scholar
  56. Toda R, Ishikawa H (1951) Hasting the germination of Robinia seeds by the use of boiling water. J Jpn For Soc 33(9):312Google Scholar
  57. Twigg LE, Lowe TJ, Taylor CM, Calver MC, Martin GR, Stevenson C, How R (2009) The potential of seed—eating birds to spread viable seeds of weeds and other undesirable plants. Austral Ecol 34(7):805–820CrossRefGoogle Scholar
  58. Tzvetkova N, Petkova K (2015) Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. J Environ Biol 36(1):59–63PubMedGoogle Scholar
  59. Uchida A, Yamamoto KT (2002) Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol 43(6):647–651CrossRefPubMedGoogle Scholar
  60. Vilela AE, Ravetta DA (2001) The effect of seed scarification and soil-media on germination, growth, storage, and survival of seedlings of five species of Prosopis L. (Mimosaceae). J Arid Environ 48(2):171–184CrossRefGoogle Scholar
  61. Wali MK (1999) Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant Soil 213(1–2):195–220CrossRefGoogle Scholar
  62. Watterson NA, Jones JA (2006) Flood and debris flow interactions with roads promote the invasion of exotic plants along steep mountain streams, western Oregon. Geomorphology 78(1):107–123CrossRefGoogle Scholar
  63. Yáñez R, Gómez B, Martínez M, Gullón B, Alonso JL (2014) Valorization of an invasive woody species, Acacia dealbata, by means of Ionic liquid pretreatment and enzymatic hydrolysis. J Chem Technol Biotechnol 89(9):1337–1343CrossRefGoogle Scholar
  64. Zare S, Tavili A, Darini MJ (2011) Effects of different treatments on seed germination and breaking seed dormancy of Prosopis koelziana and Prosopis juliflora. J For Res 22(1):35–38CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nuria Pedrol
    • 1
  • Carolina G. Puig
    • 1
  • Antonio López-Nogueira
    • 1
  • María Pardo-Muras
    • 1
  • Luís González
    • 1
  • Pablo Souza-Alonso
    • 1
  1. 1.Department of Plant Biology and Soil Science, Faculty of BiologyUniversity of VigoVigoSpain

Personalised recommendations