Journal of Forestry Research

, Volume 28, Issue 3, pp 621–628 | Cite as

Genetic diversity and population genetic structure of Python bivittatus in China

  • Yubao Duan
  • Yingshu Wang
  • Suying Bai
  • Xiuhua Tian
  • Ke Rong
  • Jianzhang Ma
Original Paper

Abstract

The Burmese python (Python bivittatus) has recently suffered large population declines in the wild in China due to illegal capture, overexploitation, deforestation and the loss of its natural habitat. Greater knowledge of the genetic diversity and structure of wild P. bivittatus populations is needed to help ensure its effective management. In this study, we investigated the genetic diversity and population genetic structure of wild P. bivittatus in China in detail. 109 P. bivittatus individuals from five distribution areas in Guangdong (GD), Guangxi (GX), Hainan (HN), Fujian (FJ) and Yunnan (YN) province of China were collected, and their genetic structure and diversity were analyzed. Eight highly polymorphic microsatellite loci were utilized to reveal high levels of genetic diversity in the P. bivittatus population. Genetic diversity was highest in GX, and lowest in GD. All geographic populations demonstrated a bottleneck effect indicating recent population decline. F st and AMOVA analyses revealed that there was moderate genetic differentiation among the five populations, and that only 10.59 % of total genetic diversity occurred among populations. F st values between populations were positively correlated with their geographical distances. Genetic structure analyses revealed that the HN, GX and GD populations, which were geographically closest, were assigned to a genetic cluster, while the YN and FJ populations constituted a single cluster, respectively.

Keywords

Python bivittatus Microsatellite Genetic diversity Population genetic 

References

  1. Astarita G, Rourke BC, Andersen JB, Fu J, Kim JH, Bennett AF, Hicks JW, Piomelli D (2006) Postprandial increase of oleoylethanolamide mobilization in small intestine of the Burmese python (Python molurus). Am J Phys 290:1407–1412Google Scholar
  2. Barker DG, Barker TM (2008) The distribution of the Burmese Python, Python molurus bivittatus. Bull Chicago Herp Soc 43:33–38Google Scholar
  3. Barker DG, Barker TM (2010) The distribution of the Burmese python, Python bivittatus. Bull Chicago Herp Soc 45:86–88Google Scholar
  4. Botstein D, White RL, Skalnick MH, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment lengthpolymorphism. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  5. Castoe TA, deKoning AP, Hall KT, Yokoyama KD, Gu W, Smith EN, Feschotte C, Uetz P, Ray DA, Dobry J, Bogden R, Mackessy SP, Bronikowski AM, Warren WC, Secor SM, Pollock DD (2011) Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Genome Biol 12:406CrossRefPubMedPubMedCentralGoogle Scholar
  6. Castoe TA, Poole AW, deKoning AP, Jones KL, Tomback DF, Oyler-McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN, Pollock DD (2012) Rapid microsatellite identification from illumina paired-end genomic sequencing in two birds and a snake. PLoS One 7:e30953CrossRefPubMedPubMedCentralGoogle Scholar
  7. Coatoe TA, Streicher JW, Meik JM, Ingrasci MJ, Poole AW, deKoning AP, Campbell JA, Parkinson CL, Smith EN, Pollock DD (2012) Thousands of microsatellite loci from the venomous coralsnake Micrurus fulvius and variability of select loci across populations and related species. Mol Ecol Resour 12:1105–1113CrossRefGoogle Scholar
  8. Collins TM, Freeman B (2008) Genetic characterization of populations of the nonindigenous Burmese python in Everglades National Park. Florida International University, Miami, pp 6–8Google Scholar
  9. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genet 144:2001–2014Google Scholar
  10. Dorcas ME, Willson JD, Gibbons JW (2011) Can invasive Burmese pythons inhabit temperate regions of the southeastern United States? Biol Invasions 13:793–802CrossRefGoogle Scholar
  11. Dorcas ME, Willson JD, Reed RN, Snow RW, Rochford MR, Miller MA, Meshaka WE, Andreadis PT, Mazzotti FJ, Romagosa CM, Hart KM (2012) Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc Natl Acad Sci USA 109:2418–2422CrossRefPubMedPubMedCentralGoogle Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  13. Excoffier L, Lischer HE (2010) Arlequin suite ver3. 5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  14. Fontanella FM, Siddall ME (2010) Isolation and characterization of 14 polymorphic microsatellite loci in the ringneck snake Diadophis punctatus (Colubridae: Dipsadinae). Conserv Genet 11:1193–1195CrossRefGoogle Scholar
  15. Frank JM, Michael SC, Kristen MH, Ray WS, Michael RR, Michael ED (2011) Cold-induced mortality of invasive Burmese pythons in south Florida. Biol Invasions 13:143–151CrossRefGoogle Scholar
  16. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University, Oxford, pp 78–83CrossRefGoogle Scholar
  17. Gibbs HL, Prior KA, Weatherhead PJ, Johnson G (1997) Genetic structure of populations of the threatened eastern massasuaga rattlesnake, Sistrurus catenatus: evidence from microsatellite DNA markers. Mol Ecol 6:1123–1132CrossRefPubMedGoogle Scholar
  18. Groot TV, Bruins E, Breeuwer JA (2003) Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus. Heredity 90:130–135CrossRefPubMedGoogle Scholar
  19. Gong S, Shi H, Mo Y et al (2009) Phylogeography of the endangered black-breasted leaf turtle (Geoemyda spengleri) and conservation implications for other chelonians. Amphibia-Reptilia 30:57–62CrossRefGoogle Scholar
  20. Hunter ME, Hart KM (2013) Rapid microsatellite marker development using next generation pyrosequencing to inform invasive Burmese python—Python molurus bivittatus—Management. Int J Mol Sci 14:4793–4804CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genetics 6:13. v.3.23. http://ibdws.sdsu.edu/
  22. Jordan PW, Goodman AE, Donnellan S (2002) Microsatellite primers for Australian and New Guinean pythons isolated with an efficient marker development method for related species. Mol Ecol Notes 2:78–82CrossRefGoogle Scholar
  23. Kalinowski T, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106CrossRefPubMedGoogle Scholar
  24. Ke WC, Wu LL, Wu WS, Chen YL (2014) Identify of Python molurus based on Cyt b and CO I gene sequence. J Fujian Norm Univ 30:91–97Google Scholar
  25. Li PP, Wang WS, Lü XP (2014) Snake conservation and sustainable utilization in China: history, statues and future. J Shenyang Norm Univ 31:129–135Google Scholar
  26. Lin LH, Ji X, Diong CH, Du Y, Lin CX (2010) Phylogeography and population structure of the Reevese’s Butterfly Lizard (Leiolepis reevesii) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 56:601–607CrossRefPubMedGoogle Scholar
  27. Liu LJ, Song ZJ, Cao SY, Zhai YF, Wang AJ, Gao L, Xiu QY, Cao DH (2006) The dynamic setting and processes of tectonic and magmatic evolution of the oblique collision zone between Indian and Eurasion plates: Exemplified by the tectonic evolution of the Three River region, eastern Tibet. Acta Petrol Sin 22:775–786Google Scholar
  28. Liu P, Chen H, Zhao WG, Jia JB (2009) Snakes species diversity and its conservation in China. Chin J Wildl 30:44–46Google Scholar
  29. Liu YF, Cao T, Liu JC, Yu P, Zhao CP, Hou GY, Zhang LL (2014) Complete mitochondrial genome sequence and analysis of the Burmese python Python bivittatus. Sichuan J Zool 33:23–30Google Scholar
  30. Manjaka A, Carolyn AB, Gary DS, Olga R, Rick AB, Edward EL (2009) Characterization of 20 microsatellite marker loci in the Malagasy tree boa (Sanzinia madagascariensis madagascariensis). Conserv Genet 10:1953–1956CrossRefGoogle Scholar
  31. Mao LQ (2011) Phylogeography and population genetic structure of the Chinese Cobra, Naja Atra. Nanjing Noamal University, Nanjing, pp 11–13Google Scholar
  32. Marshall JC, Kingsbury BA, Minchella DJ (2009) Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake. Conserv Genet 10:465–476CrossRefGoogle Scholar
  33. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689PubMedPubMedCentralGoogle Scholar
  34. Mauldin RE, Savarie PJ (2010) Acetaminophen as an Oral Toxicant for Nile Monitor Lizards (Varanus niloticus) and Burmese pythons (Python molurus bivittatus). Wildl Res 37:215–222CrossRefGoogle Scholar
  35. Mccue MD, Bennett AF, Hicks JW (2005) The effect of meal composition on specific dynamic action in Burmese pythons (Python molurus). Physiol Biochem Zool 78:182–192CrossRefPubMedGoogle Scholar
  36. Meshaka WE, Loftus WF, Steiner T (2000) The herpetofauna of Everglades National Park. Fla Sci 63:84–103Google Scholar
  37. Michael LA, Richard ME, Kandy LK, John SH, William EB, Tom CM, Richard EM (2010) Cold weather and the potential range of invasive Burmese pythons. Biol Invasions 12:3649–3652CrossRefGoogle Scholar
  38. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  39. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  40. Paquin MM, Wylie GD, Routman EJ (2006) Population structure of the giant garter snake, Thamnophis gigas. Conserv Genet 7:25–36CrossRefGoogle Scholar
  41. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  42. Ratnoff OD, Rosenberg MJ, Everson B, Emanuelson M, Tulodziecki N (1990) Notes on clotting in a Burmese python (Python molurus bivittatus). J Lab Clin Med 115:629–635PubMedGoogle Scholar
  43. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedPubMedCentralGoogle Scholar
  44. State Forestry Administration (2009) The survey focused on key terrestrial wildlife in China. Forestry, Beijing, pp 74–88Google Scholar
  45. Stuart B, Nguyen TQ, Thy N, Grismer L, Chan-Ard T, Iskandar D, Golynsky E, Lau MWN (2014) Python bivittatus. The IUCN Red List of Threatened Species. www.iucnredlist.org. Accessed on 23 Oct 2014
  46. Tzika AC, Koenig S, Miller R, Garcia G, Remy C, Milinkovitch MC (2008) Population structure of an endemic vulnerable species, the Jamaican boa (Epicrates subflavus). Mol Ecol 17:533–544CrossRefPubMedGoogle Scholar
  47. Wang S, Xie Y (2004) China red data book of endangered animals (amphibia and reptilia). Science, Beijing, pp 208–211Google Scholar
  48. Wang T, Altimiras J, Axelsson M (2002) Intracardiac flow separation in an in situperfused heart from Burmese python (Python molurus). J Exp Biol 205:2715–2723PubMedGoogle Scholar
  49. Willson JD, Dorcas ME, Snow RW (2011) Identifying plausible scenarios for the establishment of invasive Burmese pythons (Python molurus) in Southern Florida. Biol Invasions 13:1493–1504CrossRefGoogle Scholar
  50. Wu W, Chen ZW, Lu XF, Fu XJ, Long LN, Tan JM, Su ZR (2010) Medicinal value of the Burmese python. J Snake 22:145–147Google Scholar
  51. Yan J (2006) The study on evolutional history of Hainan island’s ecological environment. Nanjing Agricultural University, Nanjing, pp 40–41Google Scholar
  52. Zhang JJ, Zhong DL, Sang HQ, Zhou Y (2006) Structural and geochronological evidence for multiple episodes of deformation since Paleocene along the Ailao Shan-Red River shear zone, Southeastern Asia. Chin J Geol 41:291–310Google Scholar
  53. Zhang YZ (2010) Problems and countermeasures on Snakes resources protection in China management. J Snake 22:343–348Google Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yubao Duan
    • 1
    • 2
  • Yingshu Wang
    • 1
    • 3
  • Suying Bai
    • 1
  • Xiuhua Tian
    • 1
  • Ke Rong
    • 1
  • Jianzhang Ma
    • 1
  1. 1.College of Wild ResourcesNortheast Forestry UniversityHarbinChina
  2. 2.Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of ForestrySouthwest Forestry UniversityKunmingChina
  3. 3.Shanghai Wild Animal ParkShanghaiChina

Personalised recommendations