Advertisement

Journal of Forestry Research

, Volume 28, Issue 1, pp 15–28 | Cite as

Applications and roles of the CRISPR system in genome editing of plants

  • Wei Tang
  • Anna Y. Tang
REVIEW ARTICLE

Abstract

Genome editing is a valuable tool to target specific DNA sequences for mutagenesis in the genomes of microbes, plants, and animals. Although different genome editing technologies are available, the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which utilizes engineered endonucleases to generate a double-stranded DNA break (DSB) in the target DNA region and subsequently stimulates site-specific mutagenesis through DNA repair machineries, is emerging as a powerful genome editing tool for elucidating mechanisms of protection from plant viruses, plant disease resistance, and gene functions in basic and applied research. In this review, we provide an overview of recent advances in the CRISPR system associated genome editing in plants by focusing on application of this technology in model plants, crop plants, fruit plants, woody plants and grasses and discuss how genome editing associated with the CRISPR system can provide insights into genome modifications and functional genomics in plants.

Keywords

CRISPR system Double-stranded DNA break Functional genomics Genome editing Genome modifications 

Notes

Acknowledgments

The authors are grateful to Dr. Luo, Dr. Whitley, Dr. Lauressergues, Dr. Omidbakhshfard, and Dr. Page for their critical reading and valuable suggestions during the preparation of this manuscript.

References

  1. Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: mLO proteins in plant immunity and beyond. New Phytol 204:273–281CrossRefPubMedGoogle Scholar
  2. Ali Z, Abul-Faraj A, Piatek M, Mahfouz MM (2015) Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav 10:e1044191CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33:120–131CrossRefPubMedGoogle Scholar
  4. Basak J, Nithin C (2015) Targeting Non-Coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting. Front Plant Sci 6:1001CrossRefPubMedPubMedCentralGoogle Scholar
  5. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39CrossRefPubMedPubMedCentralGoogle Scholar
  6. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84CrossRefPubMedGoogle Scholar
  7. Bogdanove AJ (2014) Principles and applications of TAL effectors for plant physiology and metabolism. Curr Opin Plant Biol 19:99–104CrossRefPubMedGoogle Scholar
  8. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52CrossRefPubMedGoogle Scholar
  9. Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) Using the CRISPR/Cas system. PLoS ONE 10:e0144591CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chandrasegaran S, Carroll D (2015) Origins of programmable nucleases for genome engineering. J Mol Biol 33:543–548Google Scholar
  12. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol. doi: 10.1111/mpp.12375 PubMedGoogle Scholar
  13. Chaparro-Garcia A, Kamoun S, Nekrasov V (2015) Boosting plant immunity with CRISPR/Cas. Genome Biol 16:254CrossRefPubMedPubMedCentralGoogle Scholar
  14. Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97CrossRefPubMedGoogle Scholar
  15. Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol 90(1–2):49–62PubMedGoogle Scholar
  16. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217CrossRefPubMedPubMedCentralGoogle Scholar
  17. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu JK (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111:4632–4637CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fichtner F, Urrea Castellanos R, Ulker B (2014) Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239:921–939CrossRefPubMedGoogle Scholar
  19. Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:326452CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015a) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110CrossRefPubMedGoogle Scholar
  21. Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015b) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112:2275–2280CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G (2015) Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241:271–284CrossRefPubMedGoogle Scholar
  23. Ilardi V, Tavazza M (2015) Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. Front Plant Sci 6:379CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jameson PE, Song J (2015) Cytokinin: a key driver of seed yield. J Exp Bot 67:593–606CrossRefPubMedGoogle Scholar
  26. Jia H, Wang N (2014a) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9:e93806CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jia H, Wang N (2014b) Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep 33:1993–2001CrossRefPubMedGoogle Scholar
  28. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jiang W, Yang B, Weeks DP (2014) Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS ONE 9:e99225CrossRefPubMedPubMedCentralGoogle Scholar
  30. Johnson RA, Gurevich V, Filler S, Samach A, Levy AA (2015) Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta. Plant Mol Biol 87:143–156CrossRefPubMedGoogle Scholar
  31. Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57CrossRefPubMedGoogle Scholar
  32. Li JF, Zhang D, Sheen J (2014) Cas9-based genome editing in Arabidopsis and tobacco. Methods Enzymol 546:459–472CrossRefPubMedGoogle Scholar
  33. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68CrossRefPubMedGoogle Scholar
  34. Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lozano-Juste J, Cutler SR (2014) Plant genome engineering in full bloom. Trends Plant Sci 19:284–287CrossRefPubMedGoogle Scholar
  36. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284CrossRefPubMedGoogle Scholar
  37. Mahfouz MM, Piatek A, Stewart CN Jr (2014) Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J 12:1006–1014CrossRefPubMedGoogle Scholar
  38. Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mikami M, Toki S, Endo M (2015a) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88:561–572CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mikami M, Toki S, Endo M (2015b) Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep 34:1807–1815CrossRefPubMedGoogle Scholar
  41. Nagamangala Kanchiswamy C, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64CrossRefPubMedGoogle Scholar
  42. Nejat N, Rookes J, Mantri NL, Cahill DM (2016) Plant-pathogen interactions: toward development of next-generation disease-resistant plants. Crit Rev Biotechnol. doi: 10.3109/07388551.2015.1134437
  43. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693CrossRefPubMedGoogle Scholar
  44. Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae 6:19–40PubMedPubMedCentralGoogle Scholar
  45. Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400CrossRefPubMedGoogle Scholar
  46. Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629–637CrossRefPubMedGoogle Scholar
  47. Quetier F (2016) The CRISPR-Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Sci 242:65–76CrossRefPubMedGoogle Scholar
  48. Richter C, Gristwood T, Clulow JS, Fineran PC (2012) In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas system. PLoS ONE 7:e49549CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ricroch AE, Henard-Damave MC (2015) Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol 35:1–16CrossRefGoogle Scholar
  50. Sauer NJ, Mozoruk J, Miller RB, Warburg ZJ, Walker KA, Beetham PR, Schopke CR, Gocal GF (2015) Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnol J 14(2):448–462Google Scholar
  51. Schaart JG, van de Wiel CC, Lotz LA, Smulders MJ (2015) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21(5):438–449CrossRefPubMedGoogle Scholar
  52. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150CrossRefPubMedGoogle Scholar
  53. Schuster M, Schweizer G, Reissmann S, Kahmann R (2015) Genome editing in ustilago maydis using the crispr-cas system. Fungal Genet Biol 89:3–9CrossRefPubMedGoogle Scholar
  54. Scott JN, Kupinski AP, Boyes J (2014) Targeted genome regulation and modification using transcription activator-like effectors. FEBS J 281:4583–4597CrossRefPubMedGoogle Scholar
  55. Seo YS, Lim JY, Park J, Kim S, Lee HH, Cheong H, Kim SM, Moon JS, Hwang I (2015) Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. BMC Genom 16:349CrossRefGoogle Scholar
  56. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410CrossRefPubMedGoogle Scholar
  57. Shariat N, Dudley EG (2014) CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 80:430–439CrossRefPubMedPubMedCentralGoogle Scholar
  58. Steinert J, Schiml S, Fauser F, Puchta H (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84:1295–1305CrossRefPubMedGoogle Scholar
  59. Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T (2014) CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55:475–481CrossRefPubMedGoogle Scholar
  60. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and Guide RNA. Plant Physiol 169:931–945CrossRefPubMedPubMedCentralGoogle Scholar
  61. Teotia S, Singh D, Tang X, Tang G (2016) Essential RNA-based technologies and their applications in plant functional genomics. Trends Biotechnol 34:106–123CrossRefPubMedGoogle Scholar
  62. Trevino AE, Zhang F (2014) Genome editing using Cas9 nickases. Methods Enzymol 546:161–174CrossRefPubMedGoogle Scholar
  63. Tsai CJ, Xue LJ (2015) CRISPRing into the woods. GM Crops Food 6:206–215CrossRefPubMedPubMedCentralGoogle Scholar
  64. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3(12):2233–2238CrossRefGoogle Scholar
  65. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951CrossRefPubMedGoogle Scholar
  66. Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L, Wang W, Chen H, Wei C, Ye X, Li X, Tu J (2015) Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS ONE 10:e0122755CrossRefPubMedPubMedCentralGoogle Scholar
  67. Weeks DP, Spalding MH, Yang B (2015) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14(2):483–495CrossRefPubMedGoogle Scholar
  68. Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164CrossRefPubMedGoogle Scholar
  69. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983CrossRefPubMedGoogle Scholar
  70. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575CrossRefPubMedPubMedCentralGoogle Scholar
  71. Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327CrossRefPubMedPubMedCentralGoogle Scholar
  72. Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice (N Y) 7:5Google Scholar
  73. Yin K, Han T, Liu G, Chen T, Wang Y, Yu AY, Liu Y (2015) A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5:14926CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807CrossRefPubMedGoogle Scholar
  75. Zhang B, Yang X, Yang C, Li M, Guo Y (2016a) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Sci Rep 6:20315CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang H, Gou F, Zhang J, Liu W, Li Q, Mao Y, Botella JR, Zhu JK (2016b) TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J 14:186–194CrossRefPubMedGoogle Scholar
  77. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zlotorynski E (2015) Plant cell biology: cRISPR-Cas protection from plant viruses. Nat Rev Mol Cell Biol 16:642CrossRefPubMedGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Arts and ScienceEast Carolina UniversityGreenvilleUSA
  2. 2.University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations