Journal of Forestry Research

, Volume 27, Issue 2, pp 239–245 | Cite as

Identification of ISSR markers linked to flowering traits in a representative sample of Eucalyptus cladocalyx

  • Rodrigo Contreras-Soto
  • Paulina Ballesta
  • Eduardo Ruiz
  • Freddy Mora
ORIGINAL PAPER

Abstract

Early flowering and flower abundance have long been considered desirable traits in eucalypt breeding programs. In particular, flowers of Eucalyptus cladocalyx provide a nectar source for the production of honey in arid ecosystems. To identify inter-simple sequence repeat (ISSR) markers that are associated with early flowering and flower abundance in the southern Atacama Desert, we used a sample of 47 trees, representing five Australian provenances of E. cladocalyx. A unified mixed linear model (which considered the effect of genetic structure and the kinship relationship among trees) revealed that three loci were significantly associated with early flowering, which accounted for 10–16 % of the phenotypic variation, while two loci accounted for 11–13 % in flowering intensity. Locus ISO1–500 bp was associated with both flowering traits. This result is consistent with our previous findings indicating that marker-assisted selection on early flowering should have significant and positive impact on flowering intensity. The application of marker-assisted selection to identify trees that flower early and intensively may increase honey production, a resource that generates additional income for the local farmers of the southern Atacama Desert.

Keywords

Eucalyptus cladocalyx ISSR Flowering traits Marker-assisted selection 

Notes

Acknowledgments

This study was supported by the Chilean National Science and Technology Research Fund (FONDECYT); projects 11090129 and 1130306. We thank Mr. Augusto Gomes, the farmer who allowed the trial to take place on their property.

References

  1. Albani MC, Battey NH, Wilkinson MJ (2004) The development of ISSR-derived SCAR markers around the seasonal flowering locus (SFL) in Fragaria vesca. Theor Appl Genet 109:571–579CrossRefPubMedGoogle Scholar
  2. Balasaravanan T, Chezhian P, Kamalakannan R, Yasodha R, Varguese M, Gurumurthi K, Ghosh M (2006) Identification of species-diagnostic ISSR markers for six eucalyptus species. Silvae Genet 55:119–122Google Scholar
  3. Ballesta P, Mora F, Ruiz E, Contreras-Soto R (2015) Marker-trait associations for survival, growth, and flowering components in Eucalyptus cladocalyx under arid conditions. Biol Plantarum 59(2):389–392CrossRefGoogle Scholar
  4. Bernardo R, Romero-Severson J, Ziegle J, Hauser J, Joe L, Hookstra G, Doerge RW (2000) Parental contribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data. Theor Appl Genet 100(3–4):552–556Google Scholar
  5. Bornet B, Branchard M (2001) Non-anchored inter-simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19:209–215CrossRefGoogle Scholar
  6. Brawner JT, Dillon SK, Lee DJ, Meder AR, Dieters MJ, Southerton SG (2012) The use of genetic correlations to evaluate associations between SNP markers and quantitative traits. Tree Genet Genomes 8:1423–1435CrossRefGoogle Scholar
  7. Brondani RPV, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol 6:20PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bush D, Thumma B (2013) Characterizing a Eucalyptus cladocalyx breeding population using SNP markers. Tree Genet Genomes 9:741–752CrossRefGoogle Scholar
  9. Bush D, McCarthy K, Meder R (2011) Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). Ann For Sci 68:1057–1066CrossRefGoogle Scholar
  10. Cané-Retamales C, Mora F, Vargas-Reeve F, Perret S, Contreras-Soto R (2011) Bayesian threshold analysis of breeding values, genetic correlation and heritability of flowering intensity in Eucalyptus cladocalyx under arid conditions. Euphytica 178:177–183CrossRefGoogle Scholar
  11. Cappa EP, El-Kassaby YA, Garcia MN, Acuña C, Borralho NM, Grattapaglia D, Marcucci Poltri SN (2013) Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees: a case study in Eucalyptus globulus. PLoS One 8(11):e81267. doi: 10.1371/journal.pone.0081267 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Cekic C, Battey NH, Wilkinson MJ (2001) The potential of ISSR-PCR primer-pair combinations for genetic linkage analysis using the seasonal flowering locus in Fragaria as a model. Theor Appl Genet 103:540–546CrossRefGoogle Scholar
  13. Chambers PGS, Potts BM, Tilyard PA (1997) The genetic control of flowering precocity in Eucalyptus globulus ssp. globulus. Silvae Genet 46:207–214Google Scholar
  14. Chezhian P, Yasodha R, Ghosh M (2010) Genetic diversity analysis in a seed orchard of Eucalyptus tereticornis. New For 40:85–99CrossRefGoogle Scholar
  15. Contreras-Soto R, Mora F, Perret S, Vargas-Reeve F, Cané-Retamales C (2011) Predicción bayesiana del comportamiento poblacional de Eucalyptus cladocalyx para características binarias de componentes de florecimiento y supervivencia en las zonas áridas de chile. Interciencia 36:644–649Google Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Photoch Bull 19:11–15Google Scholar
  17. El-Lithy ME, Bentsink L, Hanhart CJ, Ruys GJ, Rovito D, Broekhof JLM, van der Poel HJA, van Eijk MJT, Vreugdenhil D, Koornneef M (2006) New arabidopsis recombinant inbred line populations genotyped using SNP wave and their use for mapping flowering-time quantitative trait loci. Genetics 72:1867–1876Google Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  19. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  20. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null allele. Mol Ecol Notes 7:574–578PubMedCentralCrossRefPubMedGoogle Scholar
  21. Farro AP, Bortoloto TM, Oda S, Mello E, Marino CL (2013) Identification of molecular marker linked to early flowering in Eucalyptus grandis. Rev Ins Fla 24:149–157Google Scholar
  22. Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plan Cell 15:1502–1506CrossRefGoogle Scholar
  23. Grillo MA, Li C, Hammond M, Wang L, Schemske DW (2013) Genetic architecture of flowering time differentiation between locally adapted populations of Arabidopsis thaliana. New Phytol 197:1321–1331CrossRefPubMedGoogle Scholar
  24. Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol 14:901–916CrossRefPubMedGoogle Scholar
  25. Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120CrossRefPubMedGoogle Scholar
  26. Jaya ESKD, Clemens J, Song J, Zhang H, Jameson PE (2010) Quantitative expression analysis of meristem identity genes in Eucalyptus occidentalis: AP1 is an expression marker for flowering. Tree Physiol 30:304–312CrossRefPubMedGoogle Scholar
  27. Keatley MR, Hudson IL (2007) A comparison of long-term flowering patterns of box-Ironbark species in Havelock and Rushworth forests. J Environ Modell Assess 12:279–292CrossRefGoogle Scholar
  28. Külheim C, Yeoh SH, Wallis RR, Laffan S, Moran GF, Foley WJ (2011) The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol 191:1041–1053CrossRefPubMedGoogle Scholar
  29. Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P (2012) Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genet Genomes 8:113–126CrossRefGoogle Scholar
  30. McDonald MW, Rawlings M, Butcher PA, Bell JC (2003) Regional divergence and inbreeding in Eucalyptus cladocalyx (Myrtaceae). Aust J Bot 51:393–403CrossRefGoogle Scholar
  31. McKay JK, Richards JH, Mitchell-Olds T (2003) Genetics of drought adaptation in Arabidopsis thaliana. I. Pleiotropy contributes to genetic correlations among ecological traits. Mol Ecol 12:1137–1151CrossRefPubMedGoogle Scholar
  32. Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C (2013) The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background. PLoS Genet 9:1. doi: 10.1371/journal.pgen.1003289 CrossRefGoogle Scholar
  33. Missiaggia AA, Piacezzi AL, Grattapaglia D (2005) Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis. Tree Genet Genomes 1:79–84CrossRefGoogle Scholar
  34. Montenegro G, Pizarro R, Avila G, Castro R, Ríos C, Muñoz O, Bas F, Gómez M (2003) Origen botánico y propiedades químicas de las mieles de la región mediterránea árida de Chile. Cien Inves Agraria 30:161–174Google Scholar
  35. Mora F, Castillo D, Lado B, Matus I, Poland J, Belzile F, Von Zitzewitz J, Del Pozo A (2015) Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers. Mol Breed 35:69CrossRefGoogle Scholar
  36. Mora F, Serra N (2014) Bayesian estimation of genetic parameters for growth, stem straightness, and survival in Eucalyptus globulus on an Andean Foothill site. Tree Genet Genomes 10:711–719CrossRefGoogle Scholar
  37. Mora F, Gleadow R, Perret S, Scapim CA (2009) Genetic variation for early flowering, survival and growth in sugar gum (Eucalyptus cladocalyx F. Muell) in southern Atacama Desert. Euphytica 169:335–344CrossRefGoogle Scholar
  38. Munguía-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA (2011) Meta-analysis of phenotypic selection on flowering phenology suggests that early-flowering plants are favoured. Ecol Lett 14:511–521CrossRefPubMedGoogle Scholar
  39. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330CrossRefPubMedGoogle Scholar
  40. Neath AA, Cavanaugh JE (2012) The Bayesian information criterion: background, derivation, and applications. Comp Stat 4:199–203Google Scholar
  41. Nordborg M (2000) Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154:923–929PubMedCentralPubMedGoogle Scholar
  42. Okun DO, Kenya EU, Oballa PO, Odee DW, Muluvi GM (2008) Analysis of genetic diversity in Eucalyptus grandis (Hill ex Maiden) seed sources using inter simple sequence repeats (ISSR) molecular markers. Afr J Biotechnol 7:2119–2123Google Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  44. Reynolds J, Weir BS, Cockerham CC (1983) Estimation for the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779PubMedCentralPubMedGoogle Scholar
  45. Rogiers SY, Smith JP, Holzapfel BP, Nielsen GL (2014) Shifts in biomass and nitrogen allocation of tree seedlings in response to root-zone temperature. Aust J Bot 62:205–216CrossRefGoogle Scholar
  46. SAS (2007) Version 9.1.3; SAS Institute Inc.: CaryGoogle Scholar
  47. Stich B, Melchinger AE (2009) Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and arabidopsis. BMC Genom 10:1–14CrossRefGoogle Scholar
  48. Thamarus K, Groom K, Murrell J, Byrne M, Moran G (2002) A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fiber, and floral traits. Theor Appl Genet 104:379–387CrossRefPubMedGoogle Scholar
  49. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen S, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289CrossRefPubMedGoogle Scholar
  50. Thumma BR, Matheson BA, Zhang D, Meeske C, Meder R, Downes GM, Southerton SG (2009) Identification of a cis-acting regulatory polymorphism in a eucalypt COBRA-like gene affecting cellulose content. Genetics 183:1153–1164PubMedCentralCrossRefPubMedGoogle Scholar
  51. Van-Tassell CP, Van-Vleck LD (1996) Multiple-trait Gibbs sampler for animal models: flexible programs for Bayesian and likelihood-based (co)variance component inference. J Anim Sci 74:2586–2597PubMedGoogle Scholar
  52. Vargas-Reeve F, Mora F, Perret S, Scapim CA (2013) Heritability of stem straightness and genetic correlations in Eucalyptus cladocalyx in the semi-arid region of Chile. Crop Breed Appl Biotechnol 13:107–112CrossRefGoogle Scholar
  53. Woodrow IE, Slocum D, Gleadow RM (2002) Influence of water stress on cyanogenic capacity in Eucalyptus cladocalyx. Aust J Plant Physiol 29:103–110Google Scholar
  54. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208CrossRefPubMedGoogle Scholar
  55. Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R (2012) SNP markers trace familial linkages in a cloned population of Pinus taeda—prospects for genomic selection. Tree Genet Genomes 8:1307–1318CrossRefGoogle Scholar
  56. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram Z, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4. doi: 10.1371/journal.pgen.0030004 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rodrigo Contreras-Soto
    • 1
  • Paulina Ballesta
    • 2
  • Eduardo Ruiz
    • 2
  • Freddy Mora
    • 3
  1. 1.Department of AgronomyState University of MaringáMaringáBrazil
  2. 2.Department of BotanyUniversity of ConcepciónConcepciónChile
  3. 3.Institute of Biological SciencesUniversity of TalcaTalcaChile

Personalised recommendations