Journal of Forestry Research

, Volume 24, Issue 3, pp 457–460 | Cite as

Carbon stock estimation for tree species of Sem Mukhem sacred forest in Garhwal Himalaya, India

  • Nazir A. Pala
  • A. K. Negi
  • Yogesh Gokhale
  • Showkat Aziem
  • K. K. Vikrant
  • N. P. Todaria
Original Paper

Abstract

Carbon stock estimation was conducted in tree species of Sem Mukhem sacred forest in district Tehri of Garhwal Himalaya, Uttarakhand, India. This forest is dedicated to Nagraj Devta and is dominated by tree species, including Quercus floribunda, Quercus semecarpifolia and Rhododendron arboreum. The highest values of below ground biomass density, total biomass density and total carbon density were (34.81±1.68) Mg·ha−1, (168.26±9.04) Mg·ha−1 and (84.13±4.18) Mg·ha−1 for Pinus wallichiana. Overall values of total biomass density and total carbon density calculated were 1549.704 Mg·ha−1 and 774.77 Mg·ha−1 respectively. Total value of growing stock volume density for all species was 732.56 m3·ha−1 and ranged from (144.97±11.98) m3·ha−1 for Pinus wallichiana to (7.78±1.78) m3·ha−1 for Benthamidia capitata.

Keywords

carbon management sacred forest biomass density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolin B, Sukumar R. 2000. Landuse, landuse change and forestry. In: Watson, R.T., Noble, I.R., Bolin, B., Ravindrananth, N. H., Verardo, D.J., and Dokken, D.J, (eds.), Special Report. Cambridge: Cambridge University Press, Chap 1.Google Scholar
  2. Brown SL, Schrooder P, Kern JS. 1999. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 123(1): 81–90.CrossRefGoogle Scholar
  3. Chaturvedi AN. 1973. General standard volume tables for Semal (Bombax ceiba L.). In: Indian Forest Records (vol. 12). Dehra Dun: Manager of Publications, Forest Research Institute, pp. 1–8.Google Scholar
  4. Hall CAS, Uhlig J. 1991. Refining estimates of carbon released from tropical landuse change. Can J Forest Res, 21(1): 118–131.CrossRefGoogle Scholar
  5. IPCC. 2000. Land Use, Land-Use Change and Forestry: A special report of the Intergovernmental Panel on Climate Change (IPCC). Edinburgh: Cambridge University Press, pp. 2–300.Google Scholar
  6. Knight DH. 1963. A distance method for constructing forest profile diagrams and obtaining structural data. Trop Ecol, 4: 89–94.Google Scholar
  7. Mishra R. 1968. Ecology Work Book. Calcutta: Oxford and IBM publishing Co. p. 244.Google Scholar
  8. Negi JDS, Manhas RK, Chauhan PS. 2003. Carbon allocation in different components of some tree species of India: a new approach for carbon estimation. Curr Sci, 85(11): 1528–1531.Google Scholar
  9. Sharma RP, Jain RC. 1977. General standard volume tables for Jamun (Syzygium cumini). In: Indian Forest Records (vol. 1). Dehra Dun: Manager of Publications, Forest Research Institute, pp. 1–9.Google Scholar
  10. Tiwari AK. Singh JS. 1987. Analysis of forest land-use and vegetation in a part of Central Himalaya, using aerial photographs. Environmental Conservation, 14(3): 233–244.CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nazir A. Pala
    • 1
  • A. K. Negi
    • 2
  • Yogesh Gokhale
    • 3
  • Showkat Aziem
    • 4
  • K. K. Vikrant
    • 2
  • N. P. Todaria
    • 2
  1. 1.Department of Forestry, Dolphin (PG) Institute of Biomedical and Natural SciencesManduwala DehradunIndia
  2. 2.Department of Forestry and Natural ResourcesHNB Garhwal University Srinagar GarhwalUttarkhandIndia
  3. 3.The Energy and Resources Institute (TERI)New DelhiIndia
  4. 4.Plant physiology divisionBotany discipline FRI DehradunDehradunIndia

Personalised recommendations