Journal of Forestry Research

, Volume 20, Issue 1, pp 63–72 | Cite as

Biodiversity and biotechnological potential of mangrove-associated fungi

  • Zhong-shan Cheng
  • Jia-Hui Pan
  • Wen-cheng Tang
  • Qi-jin Chen
  • Yong-cheng Lin
Review Article


This review describes the present hot research areas of mangrove-associated fungi, including its biodiversity, ecological roles, novel metabolites productions and biotechnological potential. Mangrove-associated fungi were divided into saprophytic, parasitic and true symbiotic fungi based on its ecological roles. Saprophytic fungi are fundamental to decomposition and energy flow of mangrove, additionally, their potential toxicity also exists. Pathogenic fungi have significant effects on mangrove survival, growth, and fitness. Endophytic fungi, the most prolific source of diverse bioactive compounds found among that of mangrove-associated fungi, are found in most species of mangroves. Although a significant number of reports focused on the antimicrobial, insecticidal and other bioactive metabolites as well as many novel enzymes isolated from mangrove-associated fungi, and many of those metabolites from endophytic fungi are suspected to be of significant to mangrove, only few studies have provided convincing evidence for symbiotic producers in mangrove. Hence, this paper discusses the present progress of molecular methods used to correlate the ecological roles of endophytic fungi with their bioactive metabolites;, meanwhile, the potential of using metabolic engineering and post-genomic approaches to isolate more novel enzymes and bioactive compounds and to make their possible commercial application was also discussed.


Mangrove fungi Biodiversity Bioactive metabolites Commercial application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Wahab MAA. 2005. Diversity of marine fungi from Egyptian Red Sea mangroves. Bot Mar, 48: 248–355.CrossRefGoogle Scholar
  2. Abdel-Wahab MAA, Pang KL, EI-Sharouny HM, Jones EBG. 2001. Halosarpheia unicellularis sp. nov (Halosphaeriales, Ascomycota) based on morphological and molecular evidence. Mycoscienc, 42: 255–260.CrossRefGoogle Scholar
  3. Alias SA, Kuthubutheen AJ, Jones EBG. 1995. Frequency of occurrence of fungi on wood in Malaysian mangroves. Hydrobiologia, 295: 97–106.CrossRefGoogle Scholar
  4. Alias SA, Jones EBG. 2000. Vertical distribution of marine fungi on Rhizophora apiculata at Morib mangrove, Selangor, Malaysia. Mycoscience, 41:431–436.CrossRefGoogle Scholar
  5. Agatsuma T, Takahashi A, Kabuto C, Nozoe S. 1993. Revised structure and stereochemistry of hypothemycin. Chem Pharm Bull, 41: 373–375.Google Scholar
  6. Bailey JE. 1998. Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol Progr, 14: 8–20.CrossRefGoogle Scholar
  7. Baschien C, Manz W, Neu TR, Marvanová L, Szewzyk U. 2008. In situ detection of freshwater fungi in an alpine stream by new taxon-specific FISH probes. Appl Environ Microbiol, doi:10.1128/AEM.00815-08.Google Scholar
  8. Bhadury P, Mohammad BT, Wright PC. 2006. The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol, DOI: 10.1007/s10295-005-0070-3.Google Scholar
  9. Bhaluni DS, Rawat DS. 2005. Bioactive marine natural products. Springer Press.Google Scholar
  10. Bourguet-Kondracki ML, Kornprobst JM. 2005. Marine pharmacology: potentialities in the treatment of infectious diseases, osteoporosis and Alzheimer’s disease. Adv Biochem Engin/Biotechnol, DOI 10.1007/b135824.Google Scholar
  11. Bremer GB. 1995. Lower marine fungi (labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia, 295: 89–95.CrossRefGoogle Scholar
  12. Burtseva YV, Verigina NS, Sova VV, Pivkin MV, Zvyagintseva TN. 2003. Filamentous marine fungi as producers of o-glycosylhydrolases: β-1, 3-glucanase from Chaetomium idicum. Mar Biotechnol, 5: 349–359.PubMedCrossRefGoogle Scholar
  13. Cardellina JH. 1986. Marine natural products as leads to new pharmaceutical and agrochemical agents. Pure Appl Chem, 58: 365–374.CrossRefGoogle Scholar
  14. Chen GY, Lin YC, Vrijmoed LLP, Fong WF. 2006. A new isochroman from the marine endophytic fungus 1893#, Chem Nat Compds, 42:138–141.CrossRefGoogle Scholar
  15. Chen GY, Lin YC, Wen L, Vrijmoed LLP, Jones EBG. 2003. Two new metabolites of a marine endophytic fungus (No. 1893) from an estuarine mangrove on the South China Sea coast. Tetrahedron, 59: 4907–4909.CrossRefGoogle Scholar
  16. Cheng ZS, Tang WC, Su ZJ, Cai Y, Sun SF, Chen QJ, Wang FH, Lin YC, She ZG, Vrijmoed LLP. 2008. Identification of mangrove endophytic fungus 1403 (Fusarium proliferatum) based on morphological and molecular evidence. J Forestry Res, DOI: 10.1007/s11676-008-0030-7.Google Scholar
  17. Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbæk L. 1999. Antibacterial activity of marine-derived fungi. Mycopathologia, 143: 135–138.CrossRefGoogle Scholar
  18. Cribb AB, Cribb JW. 1955. Marine fungi from Queensland-I. Papers Univ Queensland, Dept Bot, 3:78–107.Google Scholar
  19. D’souza DT, Tiwari R, Sah AK, Raghukumar C. 2006. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol, 38:504–511.CrossRefGoogle Scholar
  20. Dunn WB, Bailey NJC, Johnson HE. 2005. Measuring the metabolome: current analytical technologies. Analyst, 130: 606–625.PubMedCrossRefGoogle Scholar
  21. Fryar SC, Davies J, Booth W, Hodgkiss IJ. 2004. Succession of fungi on dead and live wood in brackish water in Brunei. Mycologia, 96(2):219–225.CrossRefGoogle Scholar
  22. Fauvel MT, Bousquet-Melou A, Moulis C, Gleye J, Jensen SR. 1995. Iridoid glucosides from Avicennia germinans. Phytochem, 38:893–894.CrossRefGoogle Scholar
  23. Gadek PA (ed). 1998. Patch deaths in tropical Queensland rainforests: association and impact of Phytophthora cinnamoni and other soil borne pathogens. Cooperative Research Centre for Torpical Rainforest Ecology and Management, Technical Report, Cairns, 99 pp.Google Scholar
  24. García-Guzmán G, Dirzo R. 2001. Patterns of leaf-pathogen infection in the understory of a Mexican rain forest: incidence, spatiotemporal variation, and mechanisms of infection. Am J Bot, 88:634–645.PubMedCrossRefGoogle Scholar
  25. Garci-Maceira FI, Di Pietro A, Huertas-Gonzalez MD, Ruiz-Roldan MC, Roncero MI. 2001. Molecular characterization of an endo-polygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Envir Microbiol, 67:2191–2196.CrossRefGoogle Scholar
  26. Garrettson-Cornell L, Simpson J. 1984. Three new marine Phytophthora species from New South Wales. Mycotaxon, 19:453–70.Google Scholar
  27. Gilbert GS, Mejia-Chang M, Rojas E. 2002. Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism. Oecologia, 132:278–285.CrossRefGoogle Scholar
  28. Gonda KE, Jendrossek D, Molitoris HP. 2000. Fungal degradeation of the thermoplastic polymer poly-β-hydrooxybutyric acid (PHB) under simulated deep sea pressure. Hydrobiologia, 426:173–183.CrossRefGoogle Scholar
  29. Gopal B, Chauhan M. 2006. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci, 68:338–354.CrossRefGoogle Scholar
  30. Guo LD, Hyde KD, Liew ECY. 2001. Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Molec Phylogen Evolut, 20(1):1–13.CrossRefGoogle Scholar
  31. Hatai K, Roza D, Nakayama T. 2000. Identification of lower fungi isolated from larvae of mangrove crab, Scylla serrata, in Indonesia. Mycoscience, 41:565–572.CrossRefGoogle Scholar
  32. Homolka L, Vyskocil P, Pilat P. 1988. Use of protoplasts in the improvement of filamentous fungi I. Mutagenesis of protoplasts of Oudemansiella mucida. Appl Microbiol Biotechnol, 28:166–169.CrossRefGoogle Scholar
  33. Huang HuaRong, Lin YongCheng, Zhou ShiNing, Verijmoed LLP. 2005. Metabolites of mangrove endophytic fungus 3920 from the South China Sea. Acta Sci Nat, 44(6): 137–138.Google Scholar
  34. Hyde KD. 1991. Fungal colonization of Rhizophora apiculata and Xylocarpus granatum poles in Kampung Kapok mangrove, Brunei. Sydowia, 43:31–38.Google Scholar
  35. Hyde KD. 1996. Marine fungi. In fungi of Australia. Vol 1B (C. Grurinovic and K. Mallett, eds), pp. 39–64. Canberra: ABRS/CSIRO.Google Scholar
  36. Hyde KD, Alias SA. 2000. Biodiversity and distribution of fungi associated with decomposing Nypa fruticans. Biodivers Conserv, 9:393–402.CrossRefGoogle Scholar
  37. Hyde KD, Lee SY. 1995. Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia, 295:107–118.CrossRefGoogle Scholar
  38. Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP. 1998. Role of fungi in marine ecosystems. Biodiv Conserv, 7: 1147–1161.CrossRefGoogle Scholar
  39. Isaka M, Suyarnsestakorn C, Tanticharoen M. 2002. Aigialomycins A-E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem, 67:1561–1566.PubMedCrossRefGoogle Scholar
  40. Ito T, Nakagiri A. 1997. Mycoflora of the rhizospheres of mangrove trees. IFO Res Com Japan, 18: 40–44.Google Scholar
  41. Jiang GuangCe, Lin YongCheng, Zhou ShiNing, Vrijmoed LLP, Jones EBG. 2000. Studies on the secondary metabolites of mangrove fungus No. 1403 from the South China Sea. Acta Sci Nat, 39(6):68–72. (in Chinese)Google Scholar
  42. Jones EBG, Abdel-Wahab MA. 2005. Marine fungi from the Bahamas Islands. Bot Mar, 48: 356–364.CrossRefGoogle Scholar
  43. Jones EBG, Alias SA. 1997. Diversity of mangrove fungi. In: (Hyde KD, ed.) Diversity of tropical microfungi. Hong Kong University Press, Hong Kong. pp. 71–91.Google Scholar
  44. Jones EBG, Stanley SJ, Pinruan U. 2008. Marine endophyte sources of new chemical natural products: a review. Bot Mar, 51(3): 179–190.CrossRefGoogle Scholar
  45. Kathiresan K, Bingham BL. 2001. Biology of mangrove and mangrove ecosystem. Adva Mar Biol, 40: 81–251.CrossRefGoogle Scholar
  46. Kernaghan G, Sigler L, Khasa D. 2003. Mycorrhizal and root endophytic fungi of containerized Picea glauca seedlings assessed by rDNA sequence analysis. Microb Ecol, 45: 128–136.PubMedCrossRefGoogle Scholar
  47. Kim CF, Lee SKY, Price J, Jack RW, Turner G, Kong RYC. 2003. Cloning and expression analysis of the pcbAB-pcbCβ-lactam genes in the marine fungi Kallichroma tethys. Appl Environ Microbiol, 69:1308–1314.PubMedCrossRefGoogle Scholar
  48. Kobayashi J, Tsuda M. 2004. Bioactive products from Okinawan marine micro- and macro-organisms. Phytochem Rev, 3:267–274.CrossRefGoogle Scholar
  49. Koffas M, Roberge C, Lee K, Stephanopoulos G. 1999. Metabolic engineering. Annu Rev Biomed Eng, 01: 535–557.CrossRefGoogle Scholar
  50. Kohlmeyer J, Kohlmeyer E. 1979. Marine mycology. The higher fungi. Academic Press, New York.Google Scholar
  51. Kohlmeyer J, Volkmann-Kohlmeyer B. 1993. Biogeographic observations on Pacific marine fungi. Mycologia, 85:337–346.CrossRefGoogle Scholar
  52. Krause SC, Raffa KF. 1992. Comparison of insect, fungal, and mechanically induced defoliation of larch: effects on plant productivity and subsequent host susceptibility. Oecologia, 90: 411–416.CrossRefGoogle Scholar
  53. Krohn K, Riaz M. 2004. Total synthesis of (+) - Xyloketal D, a secondary metabolite from the mangrove fungus Xylaria sp.. Tetrahedron Lett, 45: 293–294.CrossRefGoogle Scholar
  54. Krohn K, Steingröver K, Zsila F. 2001. Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem, 66: 6252–6.PubMedCrossRefGoogle Scholar
  55. Lee OHK, Williams GA. 2002. Spatial distribution patterns of Littoraria species in Hong Kong mangroves. Hydrobiologia, 481: 137–145.CrossRefGoogle Scholar
  56. Li LY, Huang XS, Scattler I, Fu HZ, Grabley S, Lin WH. 2006. Structure elucidation of a new friedelane triterpene from the mangrove plant Hibiscus tiliaceus, Magn Res Chem, 44(6): 624–628.CrossRefGoogle Scholar
  57. Li LY, Sattler I, Deng ZW, Groth I, Walther G, M KD, Peschel G, Grabley S, Lin WH. 2008. A-seco-oleane-type triterpenes from Phomopsis sp. (strain HKI0458) isolated from the mangrove plant Hibiscus tiliaceus. Phytochem, 69(2): 511–517.CrossRefGoogle Scholar
  58. Li X, Kondo R, Sakai K. 2002. Biodegradation of sugarcane bagasse with marine fugus Phlebia sp. MG-60. J Wood Sci, 48: 159–162.CrossRefGoogle Scholar
  59. Li X, Kondo R, Sakai K. 2003. Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn and NH4 on manganese peroxidase production and Roly R-478 decolorization by the marine isolate Phlebia sp. MG-60 under saline conditions. J Wood Sci, 49: 355–360.CrossRefGoogle Scholar
  60. Lin YC, Wu XY, Feng S, Jiang GC, Luo JH, Zhou SN, Vrijmoed LLP, Jones EBG, Krohn K, Steingröver K, Zsila F. 2001. Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem, 66: 6252–6.PubMedCrossRefGoogle Scholar
  61. Lin YC, Zhou SN. 2003a. Marine microorganism and its metabolites. Beijing: Chemical Industry Press, pp: 407.Google Scholar
  62. Lin YC, Zhou SN. 2003b. Marine microorganism and its metabolites. Beijing: Chemical Industry Press, pp: 426–427.Google Scholar
  63. Lin YC, Wang J, Wu XY, Zhou SN, Vrijmoed LLP, Jones EBG. 2002a. A novel compound enniatin G from the mangrove fungus Halosarpheia sp. (strain 732) from the South China Sea. Aust J Chem, 55: 225–227.CrossRefGoogle Scholar
  64. Lin YC, Wu XY, Deng ZJ, Wang J, Zhou SN, Vrijmoed LLP, Jones EBG. 2002b. The metabolites of the mangrove fungus Verruculina enalia No. 2606 from a salt lake in the Bahamas. Phytochem, 59: 469–471.CrossRefGoogle Scholar
  65. Liu AiRong, Wu XiaoPeng, Xu Tong. 2007. Research advances in endophytic fungi of mangrove. Chin J Appl Ecol, 18(4): 912–918. (in Chinese)Google Scholar
  66. Lively CM. Johnson SG, Delph LF, Clay K. 1995. Thinning reduces the effect of rust infection on jewelweed (Impatiens capensis). Ecology, 76: 1859–1862.CrossRefGoogle Scholar
  67. Lucero ME, Barrow JR, Osuna P, Reyes I. 2006. Plant-fungal interactions in arid and semi-arid ecosystems: Large-scale impacts from microscale processes. J Arid Envir, 65:276–284.CrossRefGoogle Scholar
  68. Macintosh DJ, Ashton EC. 2002. A review of mangrove biodiversity conservation and management. Centre for tropical ecosystems research, University of Aarhus, Denmark (pdf file).Google Scholar
  69. Mackenzie SE, Gurusamy G.S, Piórko A, Strongman DB, Hu T, Wright JLC. 2004. Isolation of sterols from marine fungus Corollosprora iacera. Can J Microbiol, 50: 1069–1072.PubMedCrossRefGoogle Scholar
  70. Mapelli V, Olsson L, Nielsen J. 2008. Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. DOI: 10.1016/j.tibtech.2008.05.008.Google Scholar
  71. Maria GL, Sridhar KR. 2003. Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol, 55(2–4):241–251.Google Scholar
  72. Martín JF. 2000. Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactam producing organisms. From Abrahams’s discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot, 53: 1008–10021.PubMedGoogle Scholar
  73. Masuma R, Yamaguchi Y, Noumi M, Omura S, Namikoshi M. 2001. Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience, 42: 455–459.CrossRefGoogle Scholar
  74. Maxwell GS. 1968. Pathogenicity and salinity tolerance of Phytophthora sp. isolated from Avicennia resinifera (Forst F.)-some initial investigations. Tane, 14: 13–23.Google Scholar
  75. Mayer AMS, Hamann MT. 2004. Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol, 6: 37–52.PubMedCrossRefGoogle Scholar
  76. Mckee KL. 1995. Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. Am J Bot, 82: 299–307.CrossRefGoogle Scholar
  77. Müller CB, Krauss J. 2005. Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol, 8: 450–456.PubMedCrossRefGoogle Scholar
  78. Newell SY. 1992. Estimating fungal biomass and productivity in decomposing litter. In Carroll GC, Wicklow DT (eds), The fungal community. Its organization and role in the ecosystem. Marcel Dekker, Inc, New York: 521–561.Google Scholar
  79. Newell SY. 1996. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exper Mar Biol Ecol, 200: 187–206.CrossRefGoogle Scholar
  80. Newell SY, Fell JW. 1992. Ergosterol content of living and submerged, decaying leaves and twigs of red mangrove. Can J Microbiol, 38: 979–982.CrossRefGoogle Scholar
  81. Newell SY, Miller JD, Fell JW. 1987. Rapid and pervasive occupation of fallen mangrove leaves by a marine zoosporic fungus. Appl Envir Microbiol, 53(10): 2464–2469.Google Scholar
  82. Nair MSR, Carey ST. 1980. Metabolites of pyrenomycetes XIII: Structure of (+) hypothemycin, an. antibiotic macrolide from Hypomyces trichothecoides. Tetrahedron Lett. 21: 2011–2012.CrossRefGoogle Scholar
  83. Niture SK, Kumar AR, Pant A. 2006. Role of glucose in production and repression of polygalacturonase and pectatelynase from phytopathogenic fungus iFusarium moniliforme NCIM 1276. World J Microbiol Biotechnol, 22:893–899.CrossRefGoogle Scholar
  84. Niture SK, Pant A. 2004. Purification and biochemical characterization of polygalacturonase II produced in semi-solid medium by a strain of Fusarium moniliforme. Microbiol Res, 159: 305–314.PubMedCrossRefGoogle Scholar
  85. Pan JH, Jones EBG, She ZG, Pang JY, Lin YC. 2008. Review of bioactive compounds from fungi in the South China Sea. Bot Mar, 51(3): 179–190.CrossRefGoogle Scholar
  86. Parekh S, Vinci VA, Strobel RJ. 2000. Improvement of microbial strains and fermentation processs. Appl Microbiol Biotechnol, 54:287–301.PubMedCrossRefGoogle Scholar
  87. Pegg KG Gillespie NC, Forsberg LI. 1980. Phytophthora spp. associated with mangrove death in central coastal Queensland. Australas Pl Pathol, 9:6–7.CrossRefGoogle Scholar
  88. Poch GK, Gloer JB. 1989. Helicascolides A and B: New lactones from the marine fungus Helicascus kanaloanus. J Nat Prod, 52: 257–260PubMedCrossRefGoogle Scholar
  89. Poch GK, Gloer JB. 1991. Auranticins A and B: Two depsidones from a mangrove isolate of the fungus Preussia aurantiaca. J Nat Prod, 54: 213–217PubMedCrossRefGoogle Scholar
  90. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. 2005. Xylanases form fungi: properties and Industrial applications. Appl Microbiol Biotechnol, 67: 577–591.PubMedCrossRefGoogle Scholar
  91. Robertson AI. 1988. Decomposition of mangrove leaf litter in tropical Australia. J Exp Mar Biol Ecol, 116: 235–247.CrossRefGoogle Scholar
  92. Rodriguez RJ, Redman RS, Henson JM. 2004. The role of fungi symbioses in the adaptation of plants to high stress environments. Mitig adap strat Glob Change, 9:261–272.CrossRefGoogle Scholar
  93. Raghukumar C, Muraleedharan U, Gaud VR, Mishra R. 2004. Xylanases of marine fungi of potentiall use of bioleaching of paper pulp. J Ind Microbiol Biotechnol, 31: 433–441.PubMedCrossRefGoogle Scholar
  94. Roza D, Hatai K. 1999. Pathogenicity of fungi isolated from the larvae of the mangrove crab, Scylla serrata, in Indonesia. Mycoscience, 40: 427–431.CrossRefGoogle Scholar
  95. Sadaba RB, Vrijmoed LLP, Jones EBG, Hodgkiss IJ. 1995. Observations on vertical distribution of fungi associated with standing senescent Acanthus ilicifolius stems at Mai Po mangrove, Hong Kong. Hydrobiologia, 295: 119–126.CrossRefGoogle Scholar
  96. Sallenave-Namont C, Pouchus YF, Robiou du Pont T, Lassus P, Verbist JF. 2000. Toxigenic saprophytic fungi in marine shellfish farming areas. Mycopathologia, 149: 21–25.PubMedCrossRefGoogle Scholar
  97. Sariaslani FS. 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol, 61: 51–69.PubMedCrossRefGoogle Scholar
  98. Sarma VV, Hyde KD. 2001. A review on frequently occurring fungi in mangrove. Fung Divers, 8: 1–34.CrossRefGoogle Scholar
  99. Sarma VV, Hyde KD, Vittal BPR. 2001. Frequency of occurrence of mangrove fungi from the east coast of India. Hydrobiologia, 455: 41–53.CrossRefGoogle Scholar
  100. Schmit JP, Shearer CA. 2003. A checklist of mangrove-associated fungi, their geography and known host plants. Mycotaxon, 80:423–477.Google Scholar
  101. Schmit JP, Shearer CA. 2004. Geographic and host distribution of lignicolous mangrove microfungi. Bot Mar, 47: 496–500.CrossRefGoogle Scholar
  102. Sengupta A, Chaudhuri S. 2002. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 12: 169–174.PubMedGoogle Scholar
  103. Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H. 2007. Fuangal diversity in aquatic habitats. Biodivers Conserv, 16: 49–67.CrossRefGoogle Scholar
  104. Song XH, Liu XH, Lin YC. 2004. Metabolites of mangrove fungus No. K23 and interaction of carboline with DNA. J Trop Oceangr, 23(3): 66–71.Google Scholar
  105. Sridhar KR. 2004. Mangrove fungi in India. Curr Sci, 86(12):1586–1587.Google Scholar
  106. Strobel GA, Daisy B, Castillo U, Harper J. 2004. Natural products from endophytic microorganisms. J Nat Prod, 67: 257–268.PubMedCrossRefGoogle Scholar
  107. Suryanarayanan TS, Kumaresan V, Johnson JA. 1998. Foliar fungal endophytes from two species of the mangrove Rhizophora. Microbiol, 44: 1003–1006.Google Scholar
  108. Tattar TA, Klekowski EJ, Stern AI. 1994. Dieback and mortality in red mangrove, Rhizophora mangle L. in southwest Puerto Rico. Arbor J, 18: 419–429.Google Scholar
  109. ten Have A, Breuil WO, Wubben JP, Visser J, van Kan JA. 2001. Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol, 33: 97–105.PubMedCrossRefGoogle Scholar
  110. Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y. 2000. Phosphate -solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils, 30: 460–468.CrossRefGoogle Scholar
  111. Venkateswara Sarma V, Hyde KD, Vittal BPR. 2001. Frequency of occurrence of mangrove fungi from the east coast of India. Hydobiologia, 455: 41–53.CrossRefGoogle Scholar
  112. Vrijmoed LLP, Jones EBG, Hyde KD. 1991. Observations on subtropical mangrove fungi in the Pearl River Estuary. Acta Sci Nat, 33(1): 78–85.Google Scholar
  113. Wang GuiWen, Li HaiYing, Sun WenBo. 2003. Primary study on arbuscular mycorrhizas of mangrove in Qinzhou Bay. Guihaia, 23(5): 445–449. (in Chinese)Google Scholar
  114. Wang GY. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol, 33(7): 545–51.PubMedCrossRefGoogle Scholar
  115. Wang SY, Mao WW, She ZG, Li CR, Yang DQ, Lin YC, Fu LW. 2007. Synthesis and biological evaluation of 12 allenic aromatic ethers. Bioorg Medic Chem Lett, 17: 2785–2788.CrossRefGoogle Scholar
  116. Weishampel PA, Bedford BL. 2006. Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza, 16(7): 495–502.PubMedCrossRefGoogle Scholar
  117. Wu RY. 1993. Studies on the microbial ecology of the Tansui Estuary. Bot Bull Acad Sin. 34:13–30.Google Scholar
  118. Wu XY, Liu XH, Jiang GC, Lin YC, Willy C, Vrijmoed LLP. 2005. Xyloketal G, a novel metabolite from the mangrove fungus Xylaria sp. 2508. Chem Nat Comps. 41(1): 27–29.CrossRefGoogle Scholar
  119. Xia XK, Huang HR, She ZG, Shao CL, Liu F, Cai XL, Vrijmoed LLP, Lin YC. 2007. 1H and 13C NMR assignments for five anthraquinones from the mangrove endophytic fungus Halorosellinia sp. (No. 1403). Magn Reson Chem, 45: 1006–1009.PubMedCrossRefGoogle Scholar
  120. Xiao YongTang, Zheng ZhongHui, Huang YaoJian, Xu QingYan, Su WenJin, Song SiYang. 2005. Nematicidal and brine shrimp lethality of secondary metabolites from marine-drived fungi. Journal of Xiamen University (Nature Science), 44(6): 847–850. (in Chinese)Google Scholar
  121. Xin Li, Ryuichiro Kondo, Kokki Sakai. 2002. Biodegradation of sugarcane bagasse with marine fugus phlebia sp. MG-60. J Wood Sci, 48: 159–162.CrossRefGoogle Scholar
  122. Xin Li, Ryuichiro Kondo, Kokki Sakai. 2003. Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn and NH4 on manganese peroxidase production and Roly R-478 decolorization by the marine isolate phlebia sp. MG-60 under saline conditions. J Wood Sci, 49: 355–360.CrossRefGoogle Scholar
  123. Xu MJ, Gessner G, Groth I, Lange C, Christner A, Bruhn T, Deng ZW, Li X, Heinemann SH, Grabley S, Bringmann G, Sattler I, Lin WH. 2007. Shearing D-K, new indole triterpenoids from an endophytic Penicillium sp. (strain HKI0459) with blocking activity on large-conductance calcium -activated potassium channels. Tetrahedron, 63: 435–444.CrossRefGoogle Scholar
  124. Xu QingYan, Huang YaoJian, Zheng ZhongHui, Song SiYang. 2005. Purification, elucidation and activities study of cytosporone B. Journal of Xiamen University (Natural Science), 44(3): 425–428. (in Chinese)Google Scholar
  125. Yang LiShan, Huang YaoJian, Zheng ZhongHui, Song SiYang, Su WenJin, Sheng YueMao. 2006. The population fluctuation and bioactivity of endophytic fungi from mangrove plants in different seasons. Journal of Xiamen University (Natural Science), 45(sup.):95–99. (in Chinese)Google Scholar
  126. You JiaLan, Mao Wei, Zhou ShiNing, Wang Jun, Lin YongCheng, Wu SiYang. 2006. Fermentation conditions and characterization of endophytic fungus #732 producting novel enniatin G from South China Sea. Act Sci Nat, 45(4): 75–78. (in Chinese)Google Scholar
  127. Yu JH, Keller N. 2005. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol, 43: 437–58.PubMedCrossRefGoogle Scholar
  128. Zhou ZhiQuan, Huang ZeYu. 2001. Study on the species and ecological character of mangrove pathogenic fungi in Guangxi. Guihaia, 21(2): 157–162. (in Chinese)Google Scholar
  129. Zhu F, Lin YC. 2006. Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea. Chin Sci Bull, 51(12):1426–1430.CrossRefGoogle Scholar
  130. Zhu F, Lin YC, Wang J, Zhou SN, Vrijmoed LLP. 2006. Methabolites of mangrove endophytic fungus #2492 from the South China Sea. Mar Sci Bull, 25(3): 34–37.Google Scholar
  131. Zeng XB, Wang HY, He LY, Lin YC, Li ZT. 2005. Medium optimization of carbon and nitrogen sources for the production of eucalyptene A and xyloketal A from Xylaria sp. 2508 using response surface methodology. Proc Biochem, 41: 293–298.Google Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Zhong-shan Cheng
    • 1
  • Jia-Hui Pan
    • 2
  • Wen-cheng Tang
    • 1
  • Qi-jin Chen
    • 1
  • Yong-cheng Lin
    • 2
  1. 1.College of Life ScienceSun Yat-sen UniversityGuangzhouP. R. China
  2. 2.School of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhouP. R. China

Personalised recommendations