Journal of Bioethical Inquiry

, Volume 13, Issue 2, pp 193–202 | Cite as

Socio-Genomics and Structural Competency

  • Dalton ConleyEmail author
  • Dolores Malaspina
Symposium: Structural Competency


Adverse developmental exposures and pathologies of the social environment make vastly greater contributions to the leading health burdens in society than currently known genotypic information. Yet, while patients now commonly bring information on single alleles to the attention of their healthcare team, the former conditions are only rarely considered with respect to future health outcomes. This manuscript aims to integrate social environmental influences in genetic predictive models of disease risk. Healthcare providers must be educated to better understand genetic risks for complex diseases and the specific health consequences of societal adversities, to facilitate patient education, disease prevention, and the optimal care in order to achieve positive health outcomes for those with early trauma or other social disadvantage.


Epigenetic Genotype Environment Health Structural competency Medical education Social genomics 


  1. 23andMe, Inc. 2015. [Home page]. Accessed February 29, 2016.
  2. Anglin, D.M., and D. Malaspina. 2008. Ethnicity effects on clinical diagnoses compared to best-estimate research diagnoses in patients with psychosis: A retrospective medical chart review. Journal of Clinical Psychiatry 69(6): 941–945.CrossRefPubMedGoogle Scholar
  3. Anonymous. 2009. What is health? The ability to adapt. The Lancet 373(9666): 781.CrossRefGoogle Scholar
  4. Benjamin, D.J., D. Cesarini, C.F. Chabris, et al. 2012. The promises and pitfalls of genoeconomics. Annual Review of Economics 4(4): 627–662.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernstein, E., and C.D. Allis. 2005. RNA meets chromatin. Genes and Development 19(14): 1635–1655.CrossRefPubMedGoogle Scholar
  6. Bongaarts, J. 2013. U.S. health in international perspective: Shorter lives, poorer health. Population and Development Review 39(1): 165–167.CrossRefGoogle Scholar
  7. Booij, L., M. Szyf, A. Carballedo, et al. 2015. DNA methylation of the serotonin transporter gene in peripheral cells and stress-related changes in hippocampal volume: A study in depressed patients and healthy controls. PLoS One 10(3):e0119061. doi: 10.1371/journal.pone.0119061.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bowers, M.E., and R. Yehuda. 2016. Intergenerational transmission of stress in humans. Neuropsychopharmacology 41(1): 232–244.CrossRefPubMedGoogle Scholar
  9. Brummett, B.H., M.A. Babyak, R. Jiang, et al. 2013. A functional polymorphism in the 5HTR2C gene associated with stress responses also predicts incident cardiovascular events. PloS One 8(12):e82781. doi: 10.1371/journal.pone.0082781.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bruni, A.C., M.E. Conidi, and L. Bernardi. 2014. Genetics in degenerative dementia: Current status and applicability. Alzheimer Disease and Associated Disorders 28(3): 199–205.CrossRefPubMedGoogle Scholar
  11. Cardon, L.R., and L.J. Palmer. 2003. Population stratification and spurious allelic association. The Lancet 361(9357): 598–604.CrossRefGoogle Scholar
  12. Charron, P. 2006. Clinical genetics in cardiology. Heart 92(8): 1172–1176.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cirillo, E., G. Giardino, V. Gallo, et al. 2014. Intergenerational and intrafamilial phenotypic variability in 22q11.2 deletion syndrome subjects. BMC Medical Genetics 15: 1. doi: 10.1186/1471-2350-15-1.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Conley, D., and E. Rauscher. 2013. Genetic interactions with prenatal social environment: Effects on academic and behavioral outcomes. Journal of Health and Social Behavior 54(1): 109–127.PubMedGoogle Scholar
  15. Cook, C.J., and J.M. Fletcher. 2015. Understanding heterogeneity in the effects of birth weight on adult cognition and wages. Journal of Health Economics 41(C): 107–116.CrossRefPubMedCentralGoogle Scholar
  16. Feldman, M.W., and R.C. Lewontin. 1975. The heritability hang-up. Science 190(4220): 1163–1168.CrossRefPubMedGoogle Scholar
  17. Fletcher, J.M. 2012. Why have tobacco control policies stalled? Using genetic moderation to examine policy impacts. PloS One 7(12), e50576. doi: 10.1371/journal.pone.0050576.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gibson, G. 2009. Decanalization and the origin of complex disease. Nature Reviews Genetics 10(2): 131–140.CrossRefGoogle Scholar
  19. Goldberg, A.D., C.D. Allis, and E. Bernstein. 2007. Epigenetics: A landscape takes shape. Cell 128(4): 635–638.CrossRefPubMedGoogle Scholar
  20. Goll, M.G., and T.H. Bestor. 2005. Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry 74: 481–514.CrossRefPubMedGoogle Scholar
  21. Gordon, C. 1998. Canguilhem: Life, health and death: Special issue dedicated to Canguilhem. Economy and Society 27(2–3): 182–189.CrossRefGoogle Scholar
  22. Gourevitch, M.N., D. Malaspina, M. Weitzman, and L.R. Goldfrank. 2008. The public hospital in American medical education. Journal of Urban Health 85(5): 779–786.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Guo, G., T.J. Cai, R. Guo, H.Y. Wang, and K.M. Harris. 2010. The dopamine transporter gene, a spectrum of most common risky behaviors, and the legal status of the behaviors. PloS One 5(2):e9352. doi: 10.1371/journal.pone.0009352.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Haeri, S., J. Williams, I. Kopeykina, et al. 2011. Disparities in diagnosis of bipolar disorder in individuals of African and European descent: A review. Journal of Psychiatric Practice 17(6): 394–403.CrossRefPubMedGoogle Scholar
  25. Hamer, D., and L. Sirota. 2000. Beware the chopsticks gene. Molecular Psychiatry 5(1): 11–13.CrossRefPubMedGoogle Scholar
  26. Hochberg, Z., R. Feil, M. Constancia, et al. 2011. Child health, developmental plasticity, and epigenetic programming. Endocrine Reviews 32(2): 159–224.CrossRefPubMedGoogle Scholar
  27. Johnson, W., and R.F. Krueger. 2005. Predictors of physical health: Toward an integrated model of genetic and environmental antecedents. Journals of Gerontology Series B: Psychology Sciences and Social Sciences 60(Special Issue 1): 42–52.CrossRefGoogle Scholar
  28. Kastrinos, F., and S. Syngal. (2011). Inherited colorectal cancer syndromes. Cancer Journal 17(6):405–15. doi: 10.1097/PPO.0b013e318237e408.
  29. Langley-Evans, S.C., and S. McMullen. 2010. Developmental origins of adult disease. Medical Principles and Practice 19(2): 87–98.CrossRefPubMedGoogle Scholar
  30. Maccari, S., H.J. Krugers, S. Morley-Fletcher, M. Szyf, and P.J. Brunton. 2014. The consequences of early-life adversity: Neurobiological, behavioural and epigenetic adaptations. Journal of Neuroendocrinology 26(10): 707–723.CrossRefPubMedGoogle Scholar
  31. Malaspina, D., C. Corcoran, K.R. Kleinhaus, et al. 2008. Acute maternal stress in pregnancy and schizophrenia in offspring: A cohort prospective study. BMC Psychiatry 8(1): 71. doi: 10.1186/1471-244X-8-71.CrossRefPubMedPubMedCentralGoogle Scholar
  32. McGowan, P.O., A. Sasaki, A.C. D’Alessio, et al. 2009. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience 12(3): 342–348.CrossRefPubMedPubMedCentralGoogle Scholar
  33. McGrath, J.J., A.J. Hannan, and G. Gibson. 2011. Decanalization, brain development and risk of schizophrenia. Translational Psychiatry 1(6):e14. doi: 10.1038/tp.2011.16.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Metzl, J., and H. Hansen. 2014. Structural competency: Theorizing a new medical engagement with stigma and inequality. Social Science & Medicine 103: 126–133.CrossRefGoogle Scholar
  35. Milekic, M.H., Y. Xin, A. O’Donnell, et al. 2015. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Molecular Psychiatry 20(8): 995–1001.CrossRefPubMedGoogle Scholar
  36. Miller, T.W., J.T. Nigg, and R.L. Miller. 2009. Attention deficit hyperactivity disorder in African American children: What can be concluded from the past ten years? Clinical Psychology Review 29(1): 77–86.CrossRefPubMedGoogle Scholar
  37. Neigh, G.N., C.F. Gillespie, and C.B. Nemeroff. 2009. The neurobiological toll of child abuse and neglect. Trauma, Violence, & Abuse 10(4): 389–410.CrossRefGoogle Scholar
  38. Papp, B., and K. Plath. 2011. Reprogramming to pluripotency: Stepwise resetting of the epigenetic landscape. Cell Research 21(3): 486–501.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Roth, T.L., F.D. Lubin, A.J. Funk, and J.D. Sweatt. 2009. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry 65(9): 760–769.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ruby, E., S. Polito, K. McMahon, M. Gorovitz, C. Corcoran, and D. Malaspina. 2014. Pathways associating childhood trauma to the neurobiology of schizophrenia. Frontiers in Psychological and Behavioral Sciences 3(1): 1–17.CrossRefGoogle Scholar
  41. Seppa, N. 2015. The mess that is stress. Science News 187(5): 18–23.CrossRefGoogle Scholar
  42. Tessarz, P., and T. Kouzarides. 2014. Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology 15(11): 703–708.CrossRefPubMedGoogle Scholar
  43. Tung, J., and Y. Gilad. 2013. Social environmental effects on gene regulation. Cellular and Molecular Life Sciences 70(22): 4323–4339.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vayena, E. 2015. Direct-to-consumer genomics on the scales of autonomy. Journal of Medical Ethics 41(4): 310–314.CrossRefPubMedGoogle Scholar
  45. Waddington, C.H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150(3811): 563–565.CrossRefGoogle Scholar
  46. Waddington, C.H. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183(4676): 1654–1655.CrossRefPubMedGoogle Scholar
  47. Weaver, I.C., A.C. D'Alessio, S.E. Brown, I.C. Hellstrom, S. Dymov, S. Sharma, M. Szyf, and MJ. Meaney. 2007. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J Neurosci 27(7):1756–1768.Google Scholar
  48. World Health Organization. 2001. Fact Sheet: The world health report 2001. Mental and neurological disorders. Accessed February 29, 2016.
  49. Yehuda, R., N.P. Daskalakis, L.M. Bierer, et al. 2015. Holocaust Exposure Induced Intergenerational Effects on FKBP5 Methylation. Biological Psychiatry. ePub ahead of print, August 12. doi: 10.1016/j.biopsych.2015.08.005.

Copyright information

© Journal of Bioethical Inquiry Pty Ltd. 2016

Authors and Affiliations

  1. 1.Department of SociologyPrinceton University; and the National Bureau of Economic ResearchPrincetonUSA
  2. 2.Departments of Psychiatry and Child and Adolescent PsychiatryNYU Langone Medical CenterNew YorkUSA

Personalised recommendations