Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 5, pp 706–714 | Cite as

Phase Constituent and Microhardness of As-Cast and Long-Time Annealed AlxCo2−xCrFeNi Multicomponent Alloys

  • Ya Sun
  • Changjun WuEmail author
  • Haoping Peng
  • Ya Liu
  • Jianhua Wang
  • Xuping Su


The phase constituent and microstructure of arc-melted AlxCo2−xCrFeNi multicomponent alloys, in both the as-cast state and after annealed at 800 or 1000 °C for 30 days, were experimentally investigated by scanning electron microscopy and x-ray diffraction. Different phase constituents were obtained in these alloys. The Al0.25Co1.75CrFeNi alloy was composed of a single FCC phase in both as-cast and 1000 °C annealed states. Small amount of B2 phase precipitated after 800 °C annealing. A eutectic structure was observed in the Al0.75Co1.25CrFeNi alloy. Its morphology kept, but small amount of σ phase separated, after being annealed at 800 °C for 30 days. In the AlxCo2−xCrFeNi (x = 1.25-1.75) alloys, a single B2 phase was obtained in the as-cast state, it would turn to two-phase of BCC + B2 after 800 °C or 1000 °C annealing. The as-cast AlCoCrFeNi alloy was also composed of a single B2 phase, it would transform to four phases of BCC + B2 + FCC + σ after 800 °C annealing, and to two phases of B2 + FCC after 1000 °C annealing for the σ phase is not stable at 1000 °C. Moreover, experimental results indicated that the alloy hardness increased with the Al content. The existence of the σ phase could obviously harden the alloy. Except for the alloys with σ precipitation, the hardness of the annealed alloys was lower than that of the as-cast ones. In addition, increasing the annealing temperature coarsened the grains and softened the alloys.


Al-Co-Cr-Fe-Ni annealing microstructure multicomponent alloys 



The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Nos. 51771035 and 51671036), Natural Science Foundation of Jiangsu Province (BK20161190), Postgraduate Research and Practice Innovation Program of School of Materials Science and Engineering Changzhou University (CL17SJ-003) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1-93CrossRefGoogle Scholar
  2. 2.
    D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448-511CrossRefGoogle Scholar
  3. 3.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213-218CrossRefGoogle Scholar
  4. 4.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299-303CrossRefGoogle Scholar
  5. 5.
    F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, and C.T. Liu, Solid Solution Island of the Co-Cr-Fe-Ni High Entropy Alloy System, Scr. Mater., 2017, 131, p 42-46CrossRefGoogle Scholar
  6. 6.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153-1158ADSCrossRefGoogle Scholar
  7. 7.
    K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Annealing Effects on Structure and Mechanical Properties of CoCrFeNiTiAlx High-Entropy Alloys, IOP Conf. Ser. Mater. Sci. Eng., 2011, 20, p 012009CrossRefGoogle Scholar
  8. 8.
    J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105-113CrossRefGoogle Scholar
  9. 9.
    P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li, Electromagnetic Wave Absorption Properties of FeCoNiCrAl0.8 High Entropy Alloy Powders and Its Amorphous Structure Prepared by High-Energy Ball Milling, J. Mater. Res., 2016, 31(16), p 2398-2406ADSCrossRefGoogle Scholar
  10. 10.
    W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb Additions on the Microstructure and Mechanical Property of CoCrFeNi High-Entropy Alloys, Intermetallics, 2015, 60, p 1-8CrossRefGoogle Scholar
  11. 11.
    A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottada, and B.S. Murty, Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi, Metall. Mater. Trans. A, 2015, 46(2), p 791-800CrossRefGoogle Scholar
  12. 12.
    S. Antonov, M. Detrois, and S. Tin, Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys, Metall. Mater. Trans. A, 2018, 49(1), p 305-320CrossRefGoogle Scholar
  13. 13.
    J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures, Mater. Sci. Forum, 2011, 688, p 419-425CrossRefGoogle Scholar
  14. 14.
    H.-P. Chou, Y.-S. Chang, S.-K. Chen, and J.-W. Yeh, Microstructure, Thermophysical and Electrical Properties in AlxCoCrFeNi (0 ≤ x≤2) High-Entropy Alloys, Mater. Sci. Eng. B, 2009, 163(3), p 184-189CrossRefGoogle Scholar
  15. 15.
    C.-M. Lin and H.-L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of High-Entropy Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288-294CrossRefGoogle Scholar
  16. 16.
    W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26, p 44-51CrossRefGoogle Scholar
  17. 17.
    N. Park, I. Watanabe, D. Terada, Y. Yokoyama, P.K. Liaw, and N. Tsuji, Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy, Metall. Mater. Trans. A, 2015, 46(4), p 1481-1487CrossRefGoogle Scholar
  18. 18.
    T.M. Butler and M.L. Weaver, Oxidation Behavior of Arc Melted AlCoCrFeNi Multi-Component High-Entropy Alloys, J. Alloys Compd., 2016, 674, p 229-244CrossRefGoogle Scholar
  19. 19.
    G. Liu, L. Liu, X. Liu, Z. Wang, Z. Han, G. Zhang, and A. Kostka, Microstructure and Mechanical Properties of Al0.7CoCrFeNi High-Entropy-Alloy Prepared by Directional Solidification, Intermetallics, 2018, 93, p 93-100CrossRefGoogle Scholar
  20. 20.
    G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, and J. Guo, Effect of Co Content on Phase Formation and Mechanical Properties of (AlCoCrFeNi)100xCox High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 710, p 200-205CrossRefGoogle Scholar
  21. 21.
    J.C. Rao, V. Ocelík, D. Vainchtein, Z. Tang, P.K. Liaw, and J.T.M. De Hosson, The FCC-BCC Crystallographic Orientation Relationship in AlxCoCrFeNi High-Entropy Alloys, Mater. Lett., 2016, 176, p 29-32CrossRefGoogle Scholar
  22. 22.
    W.-R. Wang, W.-L. Wang, and J.-W. Yeh, Phases, Microstructure and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloys at Elevated Temperatures, J. Alloys Compd., 2014, 589, p 143-152CrossRefGoogle Scholar
  23. 23.
    P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu, Effects of High Pressure Torsion on Microstructures and Properties of an Al0.1CoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2016, 655, p 283-291CrossRefGoogle Scholar
  24. 24.
    T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yanand, and Y. Wang, Effects of AL Addition on Microstructure and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2015, 648, p 15-22CrossRefGoogle Scholar
  25. 25.
    Q. Chao, T. Guo, T. Jarvis, X. Wu, P. Hodgson, and D. Fabijanic, Direct Laser Deposition Cladding of AlxCoCrFeNi High Entropy Alloys on a High-Temperature Stainless Steel, Surf. Coat. Technol., 2017, 332, p 440-451CrossRefGoogle Scholar
  26. 26.
    C. Li, J.C. Li, M. Zhao, and Q. Jiang, Effect of Aluminum Contents on Microstructure and Properties of AlxCoCrFeNi Alloys, J. Alloys Compd., 2010, 504, p S515-S518CrossRefGoogle Scholar
  27. 27.
    Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, and B. Yang, Homogenization of AlxCoCrFeNi High-Entropy Alloys with Improved Corrosion Resistance, Corros. Sci., 2018, 133, p 120-131CrossRefGoogle Scholar
  28. 28.
    J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, and J.T.M. De Hosson, Secondary Phases in AlxCoCrFeNi High-Entropy Alloys: An In Situ TEM Heating Study And Thermodynamic Appraisal, Acta Mater., 2017, 131, p 206-220CrossRefGoogle Scholar
  29. 29.
    T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Fang, Y. Zhang, J. Xue, S. Yanand, and Y. Wang, Precipitation Behavior of Al(x)CoCrFeNi High Entropy Alloys Under Ion Irradiation, Sci. Rep., 2016, 6, p 32146ADSCrossRefGoogle Scholar
  30. 30.
    A. Munitz, L. Meshi, and M.J. Kaufman, Heat Treatments’ Effects on the Microstructure and Mechanical Properties of an Equiatomic Al-Cr-Fe-Mn-Ni High Entropy Alloy, Mater. Sci. Eng. A, 2017, 689, p 384-394CrossRefGoogle Scholar
  31. 31.
    D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, and Y. Zhang, High-Entropy Al0.3CoCrFeNi Alloy Fibers with High Tensile Strength and Ductility at Ambient and Cryogenic Temperatures, Acta Mater., 2017, 123, p 285-294CrossRefGoogle Scholar
  32. 32.
    S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, and J. Li, Strengthening of Nanoprecipitations in an Annealed Al0.5CoCrFeNi High Entropy Alloy, Mater. Sci. Eng. A, 2016, 671, p 82-86CrossRefGoogle Scholar
  33. 33.
    T.M. Butler and M.L. Weaver, Investigation of the Phase Stabilities in AlNiCoCrFe High Entropy Alloys, J. Alloys Compd., 2017, 691, p 119-129CrossRefGoogle Scholar
  34. 34.
    C.W. Tsai, M.H. Tsai, K.Y. Tsai, S.Y. Chang, J.W. Yeh, and A.C. Yeh, Microstructure and Tensile Properties of Al0.5CoCrCuFeNi Alloys Produced by Simple Rolling and Annealing, Mater. Sci. Technol., 2015, 31(10), p 1178-1183CrossRefGoogle Scholar
  35. 35.
    X. Wu, W. Zhang, L. Qin, and C. Zhang, Effects of Annealing Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi High-entropy Alloy, Hot Work. Technol., 2015, 44(8), p 220-222Google Scholar
  36. 36.
    C. Wu, Y. Sun, Y. Liu, and H. Tu, Effect of Long-Time Annealing at 1000 °C on Phase Constituent and Microhardness of the 20Co-Cr-Fe-Ni Alloys, Materials, 2019, 12(10), p 1700ADSCrossRefGoogle Scholar
  37. 37.
    K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, and Y.S. Na, Dual-Phase High-Entropy Alloys for High-Temperature Structural Applications, J. Alloys Compd., 2017, 728, p 1235-1238CrossRefGoogle Scholar
  38. 38.
    M. Kato, Hardening by Spinodally Modulated Structure in BCC Alloys, Acta Metall., 1981, 29(1), p 79-87CrossRefGoogle Scholar
  39. 39.
    N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov, Effect of V Content on Microstructure and Mechanical Properties of the CoCrFeMnNiVx High Entropy Alloys, J. Alloys Compd., 2015, 628, p 170-185CrossRefGoogle Scholar
  40. 40.
    C. Li, M. Zhao, J.C. Li, and Q. Jiang, B2 Structure of High-Entropy Alloys with Addition of Al, J. Appl. Phys., 2008, 104(11), p 113504ADSCrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Materials Surface Science and TechnologyChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.National Experimental Teaching Demonstration Center of Materials Science and Engineering, School of Materials Science and EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  3. 3.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations