Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 5, pp 732–742 | Cite as

Investigation of the Thermodynamic Properties, Phase Relations, and Stability of the Cd–Gd System via Thermodynamic Remodeling

  • Jinming LiuEmail author
  • Fei Li
  • Chengjun Guo
  • Qugang Li
  • Jinping Liu
  • Xu Zhang
  • Jian Xiao
Article
  • 42 Downloads

Abstract

The CAlculation of PHAse Diagram (CALPHAD) technique is used in the critical remodeling of the Cd–Gd system. On the basis of a new experiment in literature, the excess Gibbs energies of the solution phase expression (liquid, bcc, and hcp_A3) are described using the Redlich–Kister equation. Intermetallic compounds (α-Cd2Gd, β-Cd2Gd, and Cd45Gd11), which exhibit a homogeneity range, are treated as a two-sublattice model. Four compounds (Cd3Gd, Cd58Gd13, Cd6Gd, and Cd8Gd) are treated as stoichiometric compounds. Two Calphad-type thermodynamic descriptions are developed for the CdGd and bcc. Model I is to model the compound CdGd and bcc-Gd separately. Model II is to use the formula (Cd,Gd)0.5(Cd,Gd)0.5(Va)3 to describe the compound CdGd with a CsCl-type structure (B2) and cope with the disorder–order transition from bcc-A2 to bcc-B2. The present work displays that two eutectic reactions, five peritectic reactions, one peritectoid reaction, one eutectoid reaction, one polymorphic transformation, and one congruent reaction are observed in the Cd–Gd system.

Keywords

CALPHAD method Cd–Gd phase diagram thermodynamic properties 

Notes

Acknowledgment

Authors are grateful to Jiangxi Province Science and Technology, and the Department of Education of Jiangxi Province Support Program (Nos. 20141BBE50006 and GJJ160606) for the partial financial support. This work was partially supported by the National Natural Science Foundation of China (Nos. 51761013 and 51961014), and the Science Foundation of Ganzhou City (No. [2018] 50).

References

  1. 1.
    J.-P. Glatz, R. Malmbeck, P. Souček, B. Claux, R. Meier, M. Ougier, and T. Murakami, Development of Pyrochemical Separation Processes for Recovery of Actinides from Spent Nuclear Fuel in Molten LiCl-KCl, in Molten Salts Chem., Elsevier, 2013, p 541-560.  https://doi.org/10.1016/B978-0-12-398538-5.00026-3
  2. 2.
    H. Moriyama, H. Yamana, S. Nishikawa, S. Shibata, N. Wakayama, Y. Miyashita, K. Moritani, and T. Mitsugashira, Thermodynamics of Reductive Extraction of Actinides and Lanthanides from Molten Chloride Salt into Liquid Metal, J. Alloy. Compd., 1998, 271, p 587-591CrossRefGoogle Scholar
  3. 3.
    M. Kurata, Y. Sakamura, T. Hijikata, and K. Kinoshita, Distribution Behavior of Uranium, Neptunium, Rare-Earth Elements (Y, La, Ce, Nd, Sm, Eu, Gd) and Alkaline-Earth Metals (Sr, Ba) Between Molten LiCl-KCl Eutectic Salt and Liquid Cadmium or Bismuth, J. Nucl. Mater., 1995, 227, p 110-121ADSCrossRefGoogle Scholar
  4. 4.
    B.K.A. Gschneidner and F.W. Calderwood, The Cd-Gd (Cadmium-Gadolinium) System, Bull. Alloy Phase Diagr., 1988, 9, p 29-31CrossRefGoogle Scholar
  5. 5.
    G. Bruzzone, M.L. Fornasini, and F. Merlo, The Gadolinium-Cadmium System, J. Less Common Met., 1971, 25, p 295-301CrossRefGoogle Scholar
  6. 6.
    M. Kurata and Y. Sakamura, Thermodynamic Assessment of Systems of Actinide or Rare Earth with Cd, J. Phase Equilibria., 2001, 22, p 232-240CrossRefGoogle Scholar
  7. 7.
    T.L. Reichmann and H. Ipser, Reinvestigation of the Cd–Gd Phase Diagram, J. Alloys Compd., 2014, 617, p 292-301CrossRefGoogle Scholar
  8. 8.
    T.L. Reichmann, K.W. Richter, S. Delsante, G. Borzone, and H. Ipser, Enthalpies of Formation of Cd-Pr Intermetallic Compounds and Thermodynamic Assessment of the Cd-Pr System, CALPHAD, 2014, 47, p 56-62CrossRefGoogle Scholar
  9. 9.
    T.L. Reichmann and H. Ipser, Thermochemical Investigations in the System Cadmium-Praseodymium Relevant for Pyrometallurgical Fuel Reprocessing, Metall. Mater. Trans. A, 2014, 45, p 1171-1180CrossRefGoogle Scholar
  10. 10.
    T.L. Reichmann, H.S. Effenberger, and H. Ipser, Experimental Investigation of the Cd–Pr Phase Diagram, PLoS ONE, 2014, 9, p 1-14Google Scholar
  11. 11.
    A.F. Berndt, A γ-Phase in the Plutonium–Mercury System, J. Less-Common Met., 1966, 11, p 216-219CrossRefGoogle Scholar
  12. 12.
    F.E. Wang, The Crystal Structure of Gd13Zn58, Acta Cryst., 1967, 22, p 579-584CrossRefGoogle Scholar
  13. 13.
    I. Johnson, R.V. Schablaske, B.S. Tani, and K. Anderson, CeCd6-Type Rare Earth Cadmium Alloys, Trans. Met. Soc. AIME, 1964, 230, p p1485-1487Google Scholar
  14. 14.
    A. Iandelli and A. Palenzona, Atomic Size Of Rare Earths in Intermetallic Compounds. MX Compounds of CsCl Type, J. Less-Common Met., 1965, 9, p 1-6CrossRefGoogle Scholar
  15. 15.
    A. Iandelli and A. Palenzona, On Occurrence of MX2 Phases of Rare Earths with Ib, IIb and IIIb Group Elements and Their Crystal Structures, J. Less-Common Met., 1968, 15, p 273-284CrossRefGoogle Scholar
  16. 16.
    E. Laube and J.B. Kusma, Über Einige Y- und Dy-haltige Legierungsphasen, Monatsh. Chem., 1964, 95, p 1504-1513CrossRefGoogle Scholar
  17. 17.
    J.B. Kusma and N.S. Uhryn, Crystal Structures of Some Compounds of Rare Earth Metals with Cadmium, Dopovidi Akad. Nauk Ukr. RSR., 1966, p 1025-1027Google Scholar
  18. 18.
    A.M. Mulokozi, Nature of Bonding in Rare-Earth Compounds RX2 with AlB2-Type or Closely Related Structures I: Compounds RCd2 with a Deformed AlB2 Structure and Influence of F-bonding, J. Less-Common Met., 1977, 53, p 205-210CrossRefGoogle Scholar
  19. 19.
    J. Tang and K.A. Gschneidner, Jr., Searching for New Heavy Fermion Materials in Cerium Intermetallic Compounds, J. Less-Common Met., 1989, 149, p 341-347CrossRefGoogle Scholar
  20. 20.
    A.J. Bradley and P. Jones, An X-ray Investigation of the Copper–Aluminium Alloys, J. Inst. Met., 1933, 51, p 131-162Google Scholar
  21. 21.
    G. Bruzzone, M.L. Fornasini, and F. Merlo, Rare Earth Intermediate Phases with Cd, J. Less-Common Met., 1973, 30, p 361-375CrossRefGoogle Scholar
  22. 22.
    M.L. Fornasini, B. Chabot, and E. Parthé, Crystal-Structure of Sm11cd45 with Gammabrass and Alpha-Mn Clusters, Acta Cryst. B, 1978, 34, p 2093-2099CrossRefGoogle Scholar
  23. 23.
    G. Bruzzone and M.L. Fornasini, Contribution to System Samarium–Cadmium, J. Less-Common Met., 1974, 37, p 289-292CrossRefGoogle Scholar
  24. 24.
    C.P. Gomez and S. Lidin, Comparative Structural Study of the Disordered MCd6 Quasicrystal Approximants, Phys. Rev. B, 2003, 68, p 1-9CrossRefGoogle Scholar
  25. 25.
    A.C. Larson and D.T. Cromer, Crystal Structure of YCd6, Acta Cryst. B, 1971, 27, p 1875-1879CrossRefGoogle Scholar
  26. 26.
    I. Johnson, Solubility of the Rare-Earth Metals in Liquid Cadmium, in 2nd Proc. Conf. Rare Earth Res., 1962, p 125-131Google Scholar
  27. 27.
    J. Tang and K.A. Gschneidner, Physical Metallurgy and Magnetic Behavior of Cd-Stability b.c.c.-Gd Alloys, J. Alloys Compd, 1996, 234, p 26-33CrossRefGoogle Scholar
  28. 28.
    V.R. Roshchina and A.P. Bayanov, Thermochemistry of Gadolinium–Cadmium Alloy Formation, J. Phys. Chem., 1981, 55, p 3017-3020Google Scholar
  29. 29.
    M. Kurata, Y. Sakamura, and T. Matsui, Thermodynamic Quantities of Actinides and Rare Earth Elements in Liquid Bismuth and Cadmium, J. Alloy. Compd., 1996, 234, p 83-92CrossRefGoogle Scholar
  30. 30.
    Y. Sakamura, T. Inoue, T.S. Storvick, and L.F. Grantham, Characterizations of Rare Earths and Actinides in a Molten Salt/Liquid Cadmium System, 26th Symp. Molten Salt Chem., Sapporo, 1995, p 101Google Scholar
  31. 31.
    T.L. Reichmann, R. Ganesan, and H. Ipser, Thermochemical Investigations in the System Cd–Gd, J. Alloys Compd., 2014, 610, p 676-683CrossRefGoogle Scholar
  32. 32.
    G. Bruzzone and F. Merlo, Lanthanum–Cadmium System, J. Less-Common Met., 1973, 30, p 303-305CrossRefGoogle Scholar
  33. 33.
    A. Jain and S.P. Ong, The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation, APL Mater., 2013, 1, p 11002CrossRefGoogle Scholar
  34. 34.
    A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425CrossRefGoogle Scholar
  35. 35.
    O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348CrossRefGoogle Scholar
  36. 36.
    B. Yang, C. Guo, C. Li, and Z. Du, Thermodynamic Modelling of the Hf–Pt System, Int. J. Mater. Res., 2018, 109, p 851-857CrossRefGoogle Scholar
  37. 37.
    I. Ansara, N. Dupin, H.L. Lukas, and B. Sundman, Thermodynamic Assessment of the Al-Ni System, J. Alloys Compd., 1997, 247, p 20-30CrossRefGoogle Scholar
  38. 38.
    B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-calc Databank System, CALPHAD, 1985, 9, p 153-190CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations