Advertisement

Thermodynamic Modeling of the La-Co-O System

  • Wei-Wei Zhang
  • Erwin Povoden-Karadeniz
  • Huixia Xu
  • Ming ChenEmail author
Article
  • 17 Downloads

Abstract

A thermodynamic modeling of phase diagrams and thermodynamic properties of the La-Co-O system is presented. Special attention is given to the perovskite LaCoO3−δ phase, due to its outstanding practical importance. In addition to phase equilibria, defect chemistry and charge disproportionation of lanthanum cobaltite were considered during the modeling and are discussed with respect to their thermo-chemical and electrochemical applications. Two sets of optimized parameters are obtained, one for high charge disproportionation (2Co3+ → Co2+ + Co4+) and one for low charge disproportionation. By analyzing both oxygen nonstoichiometry and ion distribution results, it is decided that the parameters for low charge disproportionation will be used in the extensions to multi-component system database (e.g. La-Sr-Co-Fe-O). Calculations with the presented thermodynamic database deliver fundamental materials properties for the optimization of technological materials for industrial applications, including SOFC and oxygen membrane.

Keywords

charge disproportionation La-Co-O lanthanum cobaltite perovskite phase diagram 

Notes

Acknowledgments

The financial support from HyFC—The Danish Hydrogen and Fuel Cell Academy and Topsoe Fuel Cell A/S is gratefully acknowledged. The authors would also like to thank James E. Saal, Mei Yang and Zi-Kui Liu for providing thermodynamic database for discussion.

References

  1. 1.
    S.C. Parida, Z. Singh, S. Dash, R. Prasad, and V. Venugopal, Standard Molar Gibbs Energies of Formation of the Ternary Compounds in the La-Co-O System Using Solid Oxide Galvanic Cell Method, J. Alloys Compd., 1999, 285(1–2), p 7-11Google Scholar
  2. 2.
    S. Tao, J.T.S. Irvine, and J.A. Kilner, An Efficient Solid Oxide Fuel Cell Based upon Single-Phase Perovskites, Adv. Mater., 2005, 17(14), p 1734-1737Google Scholar
  3. 3.
    D.B. Meadowcroft, Electronically-Conducting, Refractory Ceramic Electrodes for Open Cycle MHD Power Generation, Energy Convers., 1968, 8(4), p 185-190Google Scholar
  4. 4.
    L.B. Sis, G.P. Wirtz, and S.C. Sorenson, Structure and Properties of Reduced LaCoO3, J. Appl. Phys., 1973, 44(12), p 5553-5559ADSGoogle Scholar
  5. 5.
    J.J. Janecek and G.P. Wirtz, Ternary Compounds in the System La-Co-O, J. Am. Ceram. Soc., 1978, 61(5–6), p 242-244Google Scholar
  6. 6.
    T. Nakamura, G. Petzow, and L.J. Gauckler, Stability of the Perovskite Phase LaBO3 (B = V, Cr, Mn, Fe Co, Ni) in Reducing Atmosphere I. Experimental Results, Mater. Res. Bull., 1979, 14(5), p 649-659Google Scholar
  7. 7.
    M. Seppänen, M. Kyto, and P. Taskinen, Stability of the Ternary Phases in the La-Co-O System, Scand. J. Metall., 1979, 8, p 199-204Google Scholar
  8. 8.
    A.N. Petrov, V.A. Cherepanov, A.Y. Zuyev, and V.M. Zhukovsky, Thermodynamic Stability of Ternary Oxides in Ln-M-O (Ln = La, Pr, Nd; M = Co, Ni, Cu) Systems, J. Solid State Chem., 1988, 77(1), p 1-14ADSGoogle Scholar
  9. 9.
    K. Kitayama, Thermogravimetric Study of the Ln2O3-Co-Co2O3 System: I. Ln = La, J. Solid State Chem., 1988, 73(2), p 381-387ADSGoogle Scholar
  10. 10.
    K. Kitayama, Thermogravimetric Study of the Ln2O3-Co-Co2O3 System: V. Ln = Nd at 1100 and 1150°C, J. Solid State Chem., 1998, 137(2), p 255-260ADSMathSciNetGoogle Scholar
  11. 11.
    N.V. Proskurina, V.A. Cherepanov, O.S. Golynets, and V.I. Voronin, Phase Equilibria and Structure of Solid Solutions in the La-Co-Fe-O System at 1100°C, Inorg. Mater., 2004, 40(9), p 955-959Google Scholar
  12. 12.
    M. Yang, Y. Zhong, and Z.K. Liu, Defect Analysis and Thermodynamic Modeling of LaCoO3−δ, Solid State Ion., 2007, 178(15–18), p 1027-1032Google Scholar
  13. 13.
    J.E. Saal, Thermodynamic Modeling of Phase Transformations and Defects: From Cobalt to Doped Cobaltate Perovskites (Ph.D. thesis). The Pennsylvania State University, 2010.Google Scholar
  14. 14.
    A.N. Petrov, V.A. Cherepanov, and A.Y. Zuev, Thermodynamics, Defect Structure, and Charge Transfer in Doped Lanthanum Cobaltites: An Overview, J. Solid State Electrochem., 2006, 10(8), p 517-537Google Scholar
  15. 15.
    A.N. Grundy, B. Hallstedt, and L.J. Gauckler, Thermodynamic Assessment of the Lanthanum-Oxygen System, J. Phase Equilib., 2001, 22(2), p 105-113Google Scholar
  16. 16.
    M. Chen, B. Hallstedt, and L.J. Gauckler, Thermodynamic Assessment of the Co-O System, J. Phase Equilib., 2003, 24(3), p 212-227Google Scholar
  17. 17.
    J.J. Janecek and G.P. Wirtz, The La-Co-O Phase Diagram, Am. Ceram. Soc. Bull., 1975, 54, p 739Google Scholar
  18. 18.
    M. Seppänen and M.H. Tikkanen, On the Compound Lanthanum Cobalt Oxide (La4Co3O10), Acta Chem. Scand. A, 1976, 30(5), p 389-390Google Scholar
  19. 19.
    O.H. Hansteen and H. Fjellvåg, Synthesis, Crystal Structure, and Magnetic Properties of La4Co3O10+δ (0.00 ≤ δ ≤ 0.30), J. Solid State Chem., 1998, 141(1), p 212-220ADSGoogle Scholar
  20. 20.
    U. Lehman and H. Müller-Buschbaum, Ein Beitrag zur Chemie der Oxocobaltate(II): La2CoO4, Sm2CoO4, Z. Anorg. Allg. Chem., 1980, 470(1), p 59-63Google Scholar
  21. 21.
    J. Lewandowski, R.A. Beyerlein, J.M. Longo, and R.A. McCauley, Nonstoichiometric K2NiF4-Type Phases in the Lanthanum-Cobalt-Oxygen System, J. Am. Ceram. Soc., 1986, 69(9), p 699-703Google Scholar
  22. 22.
    O.M. Sreedharan and R. Pankajavalli, Standard Gibbs’ Energy of Formation of La2CoO4 and Comparison of Stability of La2MO4 (M = Cu, Ni or Co) Compounds, J. Mater. Sci. Lett., 1984, 3(5), p 388-390Google Scholar
  23. 23.
    Y. Kobayashi, T. Mitsunaga, G. Fujinawa, T. Arii, M. Suetake, K. Asai, and J. Harada, Structural Phase Transition from Rhombohedral to Cubic in LaCoO3, J. Phys. Soc. Jpn., 2000, 69, p 3468-3469ADSGoogle Scholar
  24. 24.
    O.M. Sreedharan and M.S. Chandrasekharaiah, Phase Change and Free Energy of Formation of LaCoO3 by Galvanic Cell Method, Mater. Res. Bull., 1972, 7(10), p 1135-1141Google Scholar
  25. 25.
    O.M. Sreedharan and M.S. Chandrasekharaiah, Standard Gibbs’ Energy of Formation of LaFeO3 and Comparison of Stability of LaMO3 (M = Mn, Fe, Co or Ni) Compounds, J. Mater. Sci., 1986, 21(7), p 2581-2584ADSGoogle Scholar
  26. 26.
    S. Stølen, F. Grønvold, H. Brinks, T. Atake, and H. Mori, Heat Capacity and Thermodynamic Properties of LaFeO3 and LaCoO3 from T = 13 K toT = 1000 K, J. Chem. Thermodyn., 1998, 30, p 365-377Google Scholar
  27. 27.
    J. Cheng, A. Navrotsky, X.D. Zhou, and H.U. Anderson, Enthalpies of Formation of LaMO3 Perovskites (M = Cr, Fe Co, and Ni), J. Mater. Res., 2005, 20(1), p 191-200ADSGoogle Scholar
  28. 28.
    K. Horinouchi, Y. Takahashi, and K. Fueki, Heat Capacities of LaCoO3 and La0.5Sr0.5CoO3 from 80 to 950 K, Yogyo-Kyokai-Shi, 1981, 89(2), p 104-106Google Scholar
  29. 29.
    M. Seppänen, M. Kyto, and P. Taskinen, Defect Structure and Nonstoichiometry of LaCoO3, Scand. J. Metall., 1980, 9(1), p 3-11Google Scholar
  30. 30.
    J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, Nonstoichiometry of the Perovskite-Type Oxides La1−xSrxCoO3−δ, J. Solid State Chem., 1989, 80(1), p 102-111ADSGoogle Scholar
  31. 31.
    A.N. Petrov, V.A. Cherepanov, and A.Y. Zuev, Oxygen Nonstoichiometry of Lanthanum, Praseodymium and Neodymium Cobaltates with Perovskite Structure, Russ. J. Phys. Chem., 1987, 61, p 326-330Google Scholar
  32. 32.
    A.Y. Zuev, A.N. Petrov, A.I. Vylkov, and D.S. Tsvetkov, The Oxygen Nonstoichiometry and Defect Structure of Unsubstituted LaCoO3−δ Cobaltite, Russ. J. Phys. Chem., 2007, 81(1), p 73-77Google Scholar
  33. 33.
    J.B. Goodenough, Narrow-Band Electrons in Transition-Metal Oxides, Czechoslov. J. Phys., 1967, 17(4), p 304-336ADSGoogle Scholar
  34. 34.
    V.G. Bhide, D. Rajoria, and Y.S. Beddy, Localized-to-Itinerant Electron Transitions in Rare-Earth Cobaltates, Phys. Rev. Lett., 1972, 28(17), p 1133-1136ADSGoogle Scholar
  35. 35.
    M. Abbate, J.C. Fuggle, A. Fujimori, L.H. Tjeng, C.T. Chen, R. Potze, G.A. Sawatzky, H. Eisaki, and S. Uchida, Electronic Structure and Spin-State Transition of LaCoO3, Phys. Rev. B, 1993, 47(24), p 16124-16130ADSGoogle Scholar
  36. 36.
    M.A. Korotin, S.Y. Ezhov, I.V. Solovyev, and V.I. Anisimov, Intermediate-Spin State and Properties of LaCoO3, Phys. Rev. B, 1996, 54(8), p 5309-5316ADSGoogle Scholar
  37. 37.
    M.W. Haverkort, Z. Hu, J.C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N.B. Brookes, H.H. Hsieh, H.J. Lin, C.T. Chen, and L.H. Tjeng, Spin State Transition in LaCoO3 Studied Using Soft X-ray Absorption Spectroscopy and Magnetic Circular Dichroism, Phys. Rev. Lett., 2006, 97, p 176405ADSGoogle Scholar
  38. 38.
    Z. Hu, H. Wu, M.W. Haverkort, H.H. Hsieh, H.J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C.T. Chen, and L.H. Tjeng, Different Look at the Spin State of Co3+ Ions in a CoO5 Pyramidal Coordination, Phys. Rev. Lett., 2004, 92(20), p 207402ADSGoogle Scholar
  39. 39.
    G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, and T.T.M. Palstra, Evidence for Orbital Ordering in LaCoO3, Phys. Rev. B, 2003, 67, p 224423ADSGoogle Scholar
  40. 40.
    H. Yokokawa, T. Kawada, and M. Dokiya, Construction of Chemical Potential Diagrams for Metal-Metal-Nonmetal Systems: Applications to the Decomposition of Double Oxides, J. Am. Ceram. Soc., 1989, 72(11), p 2104-2110Google Scholar
  41. 41.
    A.N. Grundy, B. Hallstedt, and L.J. Gauckler, Experimental Phase Diagram Determination and Thermodynamic Assessment of the La2O3–SrO System, Acta Mater., 2002, 50(9), p 2209-2222Google Scholar
  42. 42.
    E. Povoden, A.N. Grundy, M. Chen, T. Ivas, and L.J. Gauckler, Thermodynamic Assessment of the La-Fe-O System, J. Phase Equilib. Diffus., 2009, 30(4), p 351-366Google Scholar
  43. 43.
    C.P. Wang, J. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Thermodynamic Assessment of the Co-La and Mo-La Systems, J. Alloys Compd., 2008, 453(1–2), p 174-179Google Scholar
  44. 44.
    S.V. Ushakov and A. Navrotsky, Direct Measurements of Fusion and Phase Transition Enthalpies in Lanthanum Oxide, J. Mater. Res., 2011, 26(7), p 845-847ADSGoogle Scholar
  45. 45.
    M. Zinkevich, Thermodynamics of Rare Earth Sesquioxides, Prog. Mater Sci., 2007, 52(4), p 597-647Google Scholar
  46. 46.
    Mats Hillert, The Compound Energy Formalism, J. Alloys Compd., 2001, 320(2), p 161-176Google Scholar
  47. 47.
    A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317-425Google Scholar
  48. 48.
    G. Inden, Determination of Chemical and Magnetic Interchange Energies in BCC Alloys. I. General Treatment, Z. Met., 1975, 66(10), p 577-582Google Scholar
  49. 49.
    M. Hillert and M. Jarl, A Model for Alloying in Ferromagnetic Metals, Calphad, 1978, 2(3), p 227-238Google Scholar
  50. 50.
    M. Hillert, B. Jansson, B. Sundman, and J. Ågren, A Two-Sublattice Model for Molten Solutions with Different Tendency for Ionization, Metall. Trans. A, 1985, 16(1), p 261-266Google Scholar
  51. 51.
    B. Sundman, Modification of the Two-Sublattice Model for Liquids, Calphad, 1991, 15(2), p 109-119Google Scholar
  52. 52.
    M. Zinkevich, S. Geupel, F. Aldinger, A. Durygin, S.K. Saxena, M. Yang, and Z.K. Liu, Phase Diagram and Thermodynamics of the La2O3-Ga2O3 System Revisited, J. Phys. Chem. Solids, 2006, 67(8), p 1901-1907ADSGoogle Scholar
  53. 53.
    S.G.T.E. Thermodynamic Properties of Inorganic Materials, volume 19 of Landolt–Börnstein New Series, Group IV (Springer, Berlin, 1999)Google Scholar
  54. 54.
    A.N. Grundy, M. Chen, B. Hallstedt, and L.J. Gauckler, Assessment of the La-Mn-O System, J. Phase Equilib. Diffus., 2005, 26(2), p 131-151Google Scholar
  55. 55.
    E. Povoden, M. Chen, A.N. Grundy, T. Ivas, and L.J. Gauckler, Thermodynamic Assessment of the La-Cr-O System, J. Phase Equilib. Diffus., 2009, 30(1), p 12-27Google Scholar
  56. 56.
    E. Povoden, M. Chen, T. Ivas, A.N. Grundy, and L.J. Gauckler, Thermodynamic Modeling of La2O3-SrO-Mn2O3-Cr2O3 for Solid Oxide Fuel Cell Applications, J. Mater. Res., 2012, 27(15), p 1915-1926ADSGoogle Scholar
  57. 57.
    J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26(2), p 273-312Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark
  2. 2.Institute of Materials Science and TechnologyVienna University of TechnologyViennaAustria

Personalised recommendations