Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 1, pp 93–103 | Cite as

Experimental and Theoretical Assessment of Liquidus, Peritectic Transformation, and Solidus Temperatures of Laboratory and Commercial Steel Grades

  • Ondřej MartiníkEmail author
  • Bedřich Smetana
  • Jana Dobrovská
  • Simona Zlá
  • Monika Kawuloková
  • Karel Gryc
  • Ľubomíra Drozdová
  • Petr Dostál
  • Barbora Martiníková


The paper deals with theoretical and experimental study of phase transformation temperatures of steels in high temperature region (above 1000 °C), with focus on the solidus temperature, peritectic transformation temperature and liquidus temperature of multicomponent steels. Experimental data were obtained using Differential Thermal Analysis and “direct” thermal analysis. The experimental data were assessed by basic statistics. The calculations were performed using InterDendritic Solidification software and Thermo-Calc software. Also, selected empirically based models were used for calculations. The study presents the basic principles of theoretical and experimental methods, characteristics, advantages and disadvantages. Both used thermo-analytical methods are set correctly; the results are reproducible, comparable and close to equilibrium temperatures. Furthermore, comprehensive comparisons between the calculated and measured phase transformation temperatures show that the experimental data is satisfactorily accounted for by the present thermodynamic description.


computational thermodynamics liquidus peritectic transformation solidus steel temperature thermal analysis 



This work was supported by GAČR Project No. 17-18668S, TAČR Project No. TA03011277, student Project SP2018/93, and the “Support of talented students of doctoral studies at VŠB-TUO” Project No. 04766/2017/RRC.


  1. 1.
    V.I. Lakshmanan, R. Roy, and M.A. Halim, Innovative Process for the Production of Titanium Dioxide, Innovative Process Development in Metallurgical Industry, 2016, p. 359-383Google Scholar
  2. 2.
    E. Karakaya, C. Nuur, and L. Assbring, Potential Transitions in the Iron and Steel Industry in Sweden: Towards a Hydrogen-Based Future?, J. Clean. Prod., 2018, 195, p 651-663CrossRefGoogle Scholar
  3. 3.
    E. Pereloma, Phase Transformations in Steels: Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, Woodhead Publishing, 2012, 53Google Scholar
  4. 4.
    K. Gryc, B. Smetana, M. Tkadlečková, M. Žaludová, K. Michalek, P. Machovčák, L. Socha, J. Dobrovská, and K. Janiszewski, Determination of Solidus and Liquidus Temperatures for S34MnV Steel Grade by Thermal Analysis and Calculations, Metalurgija, 2014, 53(3), p 295-298Google Scholar
  5. 5.
    A. Tiwari, and B. Raj, Reactions and Mechanisms in Thermal Analysis of Advanced Materials, Scrivener Publishing, 2015Google Scholar
  6. 6.
    A. Hoffmann, and W.R. Sponholz, Direct Thermal Analysis of Solids: A Fast Method for the Determination of Halogenated Phenols and Anisols in Cork, 2004Google Scholar
  7. 7.
    A.Ş. Hakan, E. Erişir, and S. Gümüş, Modeling and Thermal Analysis of Solidification in a Low Alloy Steel, J. Therm. Anal. Calorim., 2013, 114(1), p 179-183CrossRefGoogle Scholar
  8. 8.
    R. Ferro and A. Saccone, Thermal Analysis and Alloy Phase Diagrams, Thermochim. Acta, 2004, 418(1-2), p 23-32CrossRefGoogle Scholar
  9. 9.
    I. Steinbach, B. Böttger, J. Eiken, N. Warnken, and S.G. Fries, CALPHAD and Phase-Field Modeling: A Successful Liaison, J. Phase Equilibria Diffus., 2007, 28(1), p 101-106CrossRefGoogle Scholar
  10. 10.
    O. Martiník, B. Smetana, J. Dobrovská, A. Kalup, S. Zlá, M. Kawuloková, K. Gryc, P. Dostál, Ľ. Drozdová, and B. Baudišová, Prediction and Measurement of Selected Phase Transformation Temperatures of Steels, J. Min. Metall. Sect. B: Metall., 2017, 53(3), p 391-398CrossRefGoogle Scholar
  11. 11.
    N. Saunders, and P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, 1998, 1Google Scholar
  12. 12.
    I. Steinbach, Phase-field models in materials science, Modelling and Simulation in Materials Science and Engineering. 2009, 17(7)Google Scholar
  13. 13.
    A. Kroupa, Modelling of Phase Diagrams and Thermodynamic Properties Using Calphad Method: Development of Thermodynamic Databases, Comput. Mater. Sci., 2013, 66, p 3-13CrossRefGoogle Scholar
  14. 14.
    T. Hatakeyama and Z. Liu, Handbook of Thermal Analysis, Wiley, London, 1998Google Scholar
  15. 15.
    J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26(2), p 273-312CrossRefGoogle Scholar
  16. 16.
    J. Miettinen, S. Louhenkilpi, H. Kytönen, and J. Laine, IDS: Thermodynamic-Kinetic-Empirical Tool for Modelling of Solidification, Microstructure and Material Properties, Math. Comput. Simul., 2010, 80(7), p 1536-1550MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    K. Gryc, B. Smetana, M. Žaludová, K. Michalek, P. Klus, M. Tkadlečková, L. Socha, J. Dobrovská, P. Machovčák, L. Válek, R. Pachlopnik, and B. Chmiel, Determination of the Solidus and Liquidus Temperatures of the Real-Steel Grades with Dynamic Thermal-Analysis Methods, Mater. Tehnol., 2013, 47(5), p 569-575Google Scholar
  18. 18.
    B. Smetana, M. Žaludová, S. Zlá, S. Rosypalová, A. Kalup, J. Dobrovská, K. Michalek, M. Strouhalová, P. Dostál, and L. Válek, Important Aspects of Phase Transformations Temperatures Study of Steels by use oF Thermal Analysis Methods, METAL 2014—23rd International Conference on Metallurgy and Materials, Conference Proceedings, 93-98.Google Scholar
  19. 19.
    M. Žaludová, B. Smetana, S. Zlá, J. Dobrovská, A. Watson, J. Vontorová, S. Rosypalová, J. Kukutschová, and M. Cagala, Experimental Study of Fe-C-O Based System Above 1000 °C, J. Therm. Anal. Calorim., 2013, 112(1), p 465-471CrossRefGoogle Scholar
  20. 20.
    M. Žaludová, B. Smetana, S. Zlá, J. Dobrovská, V. Vodárek, K. Konečná, V. Matějka, and P. Matějková, Experimental Study of Fe-C-O Based System Below 1000 °C, J. Therm. Anal. Calorim., 2013, 111(2), p 1203-1210CrossRefGoogle Scholar
  21. 21.
    Z. Liu, Y. Kobayashi, and K. Nagai, Effect of Phosphorus on Sulfide Precipitation in Strip Casting Low Carbon Steel, Mater. Trans., 2005, 46(1), p 26-33CrossRefGoogle Scholar
  22. 22.
    X. Wang, X. Wang, B. Wang, B. Wang, and Q. Liu, Differential Calculation Model for Liquidus Temperature of Steel, Steel Res. Int., 2011, 82(3), p 164-168CrossRefGoogle Scholar
  23. 23.
    J.M. Cabrera-Marrero, V. Carreno-Galindo, R.D. Morales, and F. Chavez-Alcala, Macro-Micro Modeling of the Dentritic Microstructure of Steel Billets Processes by continuous Casting, ISIJ Int., 1998, 38(8), p 812-821CrossRefGoogle Scholar
  24. 24.
    Z. Han, K. Cai, and B. Liu, Prediction and Analysis on Formation of Internal Cracks, ISIJ Int., 2001, 41(12), p 1473-1480CrossRefGoogle Scholar
  25. 25.
    D. Kalisz and S. Rzadkosz, Modeling of the Formation of AlN Precipitates During Solidification of Steel, Archives Foundry Eng., 2013, 13(1), p 63-68CrossRefGoogle Scholar
  26. 26.
    J. Bažan, O. Salva, Z. Michalík, and J. Milatová, Calculation of the Melting and Solidification Temperatures of Steels, Sborník vědeckých prací Vysoké školy báňské v Ostravě, 1993, 39(1), p 19-26Google Scholar
  27. 27.
    R. Diederichs and W. Bleck, Modelling of Manganese Sulphide Formation During Solidification, Part I: Description of MnS Formation Parameters, Steel Res. Int., 2006, 77(3), p 202-209CrossRefGoogle Scholar
  28. 28.
    R.J. Fruehan, The Making, shaping, and Treating of Steel, AISE Steel Foundation, 1998Google Scholar
  29. 29.
    Q. Liu, X. Zhang, B. Wang, and B. Wang, Control Technology of Solidification and Cooling in the Process of Continuous Casting of Steel, in Science and Technology of Casting Processes, 2012, p 169-204.Google Scholar
  30. 30.
    M. Wolf, Proceedings of Concast Metallurgical Seminar, 1982, 1Google Scholar
  31. 31.
    E. Kivineva, and N. Suutuala, Ruostumattomien terästen likviduslämpötilojen riippuvüüs koostumuksesta, 1987, 87, p 5397-109Google Scholar
  32. 32.
    J.P. Aymard and P. Détrez, Fonderie, 1974, 330, p 11-24Google Scholar
  33. 33.
    T. Elbel, Výpočet intervalu teplot tuhnutí u uhlíkových a nízkolegovaných ocelí, Slévárenství, 1980, 28, p 318Google Scholar
  34. 34.
    Unpublished information from the industrial partner (2018)Google Scholar
  35. 35.
    R. Sarkar, A. Sengupta, V. Kumar, and S.K. Choudhary, Effects of Alloying Elements on the Ferrite Potential of Peritectic and Ultra-Low Carbon Steels, ISIJ Int., 2015, 55(4), p 781-790CrossRefGoogle Scholar
  36. 36.
    J. Štětina, Dynamický model teplotního pole plynule odlévané bramy, Dissertation thesis, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava.Ostrava, 2007Google Scholar
  37. 37.
    A.A. Howe and J. Miettinen, Estimation of Liquidus Temperatures for Steels Using Thermodynamic Approach, Ironmak. Steelmak., 2000, 27(3), p 212-227CrossRefGoogle Scholar
  38. 38.
    A. Kalup, B. Smetana, M. Kawuloková, S. Zlá, H. Francová, P. Dostál, and J. Dobrovská, Liquidus and Solidus Temperatures and Latent Heats of Melting of Steels, J. Therm. Anal. Calorim., 2017, 127(1), p 123-128. CrossRefGoogle Scholar
  39. 39.
    Q. Wu, J. Wang, Y. Gu, Y. Guo, G. Xu, and Y. Cui, Experimental Diffusion Research on BCC Ti-Al-Sn Ternary Alloys. J. Phase Equilib. Diffus. 2018, p 1-7Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Ondřej Martiník
    • 1
    Email author
  • Bedřich Smetana
    • 1
    • 2
  • Jana Dobrovská
    • 1
    • 2
  • Simona Zlá
    • 1
    • 2
  • Monika Kawuloková
    • 1
    • 2
  • Karel Gryc
    • 1
    • 2
  • Ľubomíra Drozdová
    • 1
  • Petr Dostál
    • 1
  • Barbora Martiníková
    • 1
  1. 1.Faculty of Materials Science and TechnologyVŠB – Technical University of OstravaOstravaCzech Republic
  2. 2.Laboratory for Modelling of Processes in the Liquid and Solid PhaseRegional Materials Science and Technology Centre (RMSTC)Ostrava, PorubaCzech Republic

Personalised recommendations