Journal of Phase Equilibria and Diffusion

, Volume 40, Issue 1, pp 34–44 | Cite as

Experimental Investigation and Thermodynamic Extrapolation of the Ga-Ge-Sb Phase Diagram

  • Dragan ManasijevićEmail author
  • Duško Minić
  • Ljubiša Balanović
  • Milena Premović
  • Milan Gorgievski


Phase relations in the Ga-Ge-Sb ternary system were investigated experimentally, using scanning electron microscopy with energy dispersive spectroscopy (SEM–EDS) and differential scanning calorimetry (DSC). Nine ternary samples were prepared by melting of pure elements under an argon atmosphere. The compositions of the prepared alloys were situated along three cross sections with the molar ratios Ga:Ge = 1, Ga:Sb = 1 and Ge:Sb = 1. Phase transition temperatures of the investigated samples were determined using DSC. The microstructure of the samples was analyzed using a scanning electron microscope with EDS and co-existing phases were identified. Binary thermodynamic data from literature, successfully used for phase diagram calculations of binary Ga-Ge, Ga-Sb and Ge-Sb systems, were used for the prediction of phase equilibria in the ternary Ga-Ge-Sb system. The activities of Ga in the liquid phase were calculated using the Redlich–Kister–Muggianu model and compared with experimental data reported in the literature. The liquidus projection, invariant equilibria and three vertical sections of the Ga-Ge-Sb ternary system were calculated and compared with the experimental results and a good agreement was observed.


Ga-Ge-Sb ternary system phase equilibria thermodynamic properties 



This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 142043). Calculations were performed by PANDAT software.


  1. 1.
    S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI, Semiconductors, Wiley, Hoboken, 2009CrossRefGoogle Scholar
  2. 2.
    A. Rockett, The Materials Science of Semiconductors, Springer, Berlin, 2008CrossRefGoogle Scholar
  3. 3.
    V. Tomashyk, Ternary Alloys Based on III-V Semiconductors (CRC Press, 2017). ISBN 9781498778381Google Scholar
  4. 4.
    I. Ansara, J.P. Bros, and M. Gambino, Thermodynamic analysis of the germanium-based ternary systems Al-Ga-Ge, Al-Ge-Sn, Ga-Ge-Sn, Calphad, 1979, 3, p 225-233Google Scholar
  5. 5.
    P.H. Keck and J. Broder, The Solubility of Silicon and Germanium in Gallium and Indium, Phys. Rev. Lett., 1953, 90(4), p 521-522ADSGoogle Scholar
  6. 6.
    E.S. Greiner and P. Breidt, Melting Point of Germanium and the Constitution of Some Ge-Ga Alloys, JOM, 1955, 7(1), p 187-188ADSCrossRefGoogle Scholar
  7. 7.
    N. de Roche, On the Gallium–Germanium System, Z. Metallkd., 1957, 48, p 58-60 (in German)Google Scholar
  8. 8.
    C.D. Thurmond and M. Kowalchik, Germanium and Silicon Liquidus Curves, Bell Syst. Tech. J., 1960, 39, p 169-204CrossRefGoogle Scholar
  9. 9.
    B. Predel and D.W. Stein, Thermodynamics Investigation of the Germanium–Aluminum and Germanium–Gallium Systems, Z. Metallkd., 1971, 62, p 499-504 (in German)Google Scholar
  10. 10.
    H. Eslami, Y.M. Muggianu, M. Gambino, J.P. Bros, and P. Leydet, Enthalpies de formation des alliages liquides aluminium–germanium, gallium–germanium et aluminium–gallium–germanium entre 713 et 1230 K, J. Less Common Met., 1979, 64(1), p 31-44CrossRefGoogle Scholar
  11. 11.
    J.S. Wang, S. Jin, W.J. Zhu, H.Q. Dong, X.M. Tao, H.S. Liu, and Z.P. Jin, First-Principles Calculations Assisted Thermodynamic Assessment of the Pt-Ga-Ge Ternary System, Calphad, 2009, 33, p 561-569CrossRefGoogle Scholar
  12. 12.
    I. Ansara, C. Chalillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, T.G. Chart, and T. Anderson, A Binary Database for III–V Compound Semiconductor Systems, Calphad, 1994, 18(2), p 177-222CrossRefGoogle Scholar
  13. 13.
    W.F. Schottky and M.B. Bever, On the Thermodynamic Properties of the III–V Compounds InSb, GaSb, and InAs, Acta Metall., 1958, 6(5), p 320-326CrossRefGoogle Scholar
  14. 14.
    T.J. Anderson, T.L. Aselage, and L.F. Donaghey, Solid-state electrochemical study of (gallium + antimony) liquid alloys, J. Chem. Thermodyn., 1983, 15(10), p 927-940CrossRefGoogle Scholar
  15. 15.
    M.H. Maglione and A. Potier, Thermodynamique dans le système Ga-Sb (I), J. Chim. Phys., 1968, 65, p 1595-1598CrossRefGoogle Scholar
  16. 16.
    K.Y. Cheng and G.L. Pearson, The Al-Ga-Sb Ternary Phase Diagram and Its Application to Liquid Phase Epitaxial Growth, J. Electrochem. Soc., 1977, 124(5), p 753-757CrossRefGoogle Scholar
  17. 17.
    K. Ishida, T. Shumiya, T. Nomura, H. Ohtani, and T. Nishizawa, Phase Diagram of the Ga-As-Sb System, J. Less Common Met., 1988, 142, p 135-144CrossRefGoogle Scholar
  18. 18.
    J. Yang and A. Watson, An Assessment of Phase Diagram and Thermodynamic Properties of the Gallium–Indium–Antimony System, Calphad, 1994, 18(2), p 165-175CrossRefGoogle Scholar
  19. 19.
    R.W. Olesinski and G.J. Abbaschian, The Ge-Sb (Germanium–Antimony) System, Bull. Alloy Phase Diagr., 1986, 7(3), p 219-222CrossRefGoogle Scholar
  20. 20.
    P.-Y. Chevalier, A Thermodynamic Evaluation of the Ge-In, Ge-Pb, Ge-Sb, Ge-Tl and Ge-Zn Systems, Thermochim. Acta, 1989, 155, p 227-240CrossRefGoogle Scholar
  21. 21.
    J. Wang, C. Leinenbach, and M. Roth, Thermodynamic Description of the Au-Ge-Sb Ternary System, J. Alloys Compd., 2009, 485, p 577-582CrossRefGoogle Scholar
  22. 22.
    N. Nasir, A. Grytsiv, P. Rogl, A. Saccone, and G. Giester, Phase equilibria in systems Ce–M–Sb (M = Si, Ge, Sn) and superstructure Ce12Ge9 − xSb23 + x (x = 3.8 ± 0.1), J. Solid State Chem., 2009, 182, p 645-656ADSCrossRefGoogle Scholar
  23. 23.
    A. Kostov, D. Živković, and Ž. Živković, Thermodynamic Analysis of Binary Systems Ge-Ga and Ge-Sb, Thermochim. Acta, 1999, 338, p 35-43CrossRefGoogle Scholar
  24. 24.
    B. Predel and D.W. Stein, Thermodynamic Investigation of the Systems Germanium–Zinc, Germanium–Indium and Germanium–Antimony, Z. Metallkd., 1970, 61, p 909-914Google Scholar
  25. 25.
    S.A. Alfer, A.A. Vecher, and O.A. Egorov, Enthalpy of Mixing in the Germanium–Antimony–Tellurium System, Russ. J. Phys. Chem., 1981, 55, p 910-912Google Scholar
  26. 26.
    J. Liu, C. Guo, C. Li, and Z. Du, Thermodynamic Optimization of the Ge-Sb and Ge-Sb-Sn Systems, Thermochim. Acta, 2011, 520, p 38-47CrossRefGoogle Scholar
  27. 27.
    A. Kostov, D. Živković, and Ž. Živković, Comparative Thermodynamic Analysis of Ga-GeSb0.855 Section in the ternary system Ga-Ge-Sb, J. Therm. Anal. Calorim., 2000, 60, p 473-487CrossRefGoogle Scholar
  28. 28.
    K.C. Chou, W.C. Li, F. Li, and M. He, Formalism of New Ternary Model Expressed in Terms of Binary Regular-Solution Type Parameters, Calphad, 1996, 20(4), p 395-406CrossRefGoogle Scholar
  29. 29.
    K.C. Chou and S.K. Wei, A New Generation Solution Model for Predicting Thermodynamic Properties of a Multicomponent System from Binaries, Metall. Mater. Trans. B, 1997, 28, p 439-445CrossRefGoogle Scholar
  30. 30.
    J.P. Hajra, Representation of Excess Thermodynamic Properties of Ternary Systems Using Interaction Parameters, Metall. Mater. Trans. B, 1991, 22(5), p 583-591ADSCrossRefGoogle Scholar
  31. 31.
    I. Katayama, Y. Fukuda, and Y. Hattori, Measurement of Activity of Gallium in Liquid Ga-Sb-Ge Alloys by EMF Method with Zirconia as Solid Electrolyte, Ber. Bunsenges. Phys. Chem., 1998, 102(9), p 1235-1239CrossRefGoogle Scholar
  32. 32.
    S.I. Shah, K.C. Cadien, and J.E. Greene, GaSb-Ge Pseudobinary Phase Diagram, J. Electron. Mater., 1982, 11(1), p 53-58ADSCrossRefGoogle Scholar
  33. 33.
    N. Saunders and A.P. Miodownik, CALPHAD (A Comprehensive Guide), Elsevier, London, 1998Google Scholar
  34. 34.
    H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge, 2007CrossRefzbMATHGoogle Scholar
  35. 35.
    D. Manasijević, D. Minić, D. Živković, I. Katayama, J. Vrestal, and D. Petković, Experimental Study and Thermodynamic Calculation of the Bi-Ga-Sn Phase Equilibria, J. Phys. Chem. Solids, 2009, 70(9), p 1267-1273ADSCrossRefGoogle Scholar
  36. 36.
    A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317-425CrossRefGoogle Scholar
  37. 37.
    O. Redlich and A. Kister, Thermodynamics of nonelectrolyte solutions. Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem., 1948, 40, p 345-348CrossRefGoogle Scholar
  38. 38.
    Y.-M. Muggianu, M. Gambino, and J.-P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth–Gallium–Tin at 723 K—Choice of Analytical Representation of Integral and Partial Thermodynamic Functions of Mixing for this Ternary System, J. Chim. Phys., 1975, 72, p 83-88CrossRefGoogle Scholar
  39. 39.
    W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko, DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing, NIST Special Publication 960-15, Washington, DC, 2006Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Dragan Manasijević
    • 1
    Email author
  • Duško Minić
    • 2
  • Ljubiša Balanović
    • 1
  • Milena Premović
    • 2
  • Milan Gorgievski
    • 1
  1. 1.Technical Faculty in BorUniversity of BelgradeBorSerbia
  2. 2.Faculty of Technical SciencesUniversity of PrištinaKosovska MitrovicaSerbia

Personalised recommendations