Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 4, pp 426–436 | Cite as

650 and 750 °C Isothermal Sections of the Cr-Sb-Fe System

  • Yukuan Xia
  • Ya Liu
  • Changjun Wu
  • Haoping Peng
  • Hao Tu
  • Jianhua Wang
  • Xuping Su
Article
  • 133 Downloads

Abstract

The 650 and 750 °C isothermal sections of the Cr-Sb-Fe ternary system were determined by means of scanning electron microscopy, energy dispersive spectroscopy and x-ray diffraction. More than 40 alloys were prepared by a powder metallurgy method. Two continuous solid solution phases (Fe, Cr)Sb and (Fe, Cr)Sb2 were clearly identified. Two three-phase regions have been confirmed in the Cr-Sb-Fe ternary system at 650 and 750 °C isothermal sections. No ternary compound was found in this system.

Keywords

continuous solid solution Cr-Sb-Fe system phase diagram 

Notes

Acknowledgments

Financial support from the National Science Foundation of China (Grant Nos. 51471037 and 51671036) and a project funded by the Priority Academic Program Development of Jiangsu higher education institutions are greatly acknowledged.

References

  1. 1.
    L. Cho, M.S. Kim, Y.H. Kim, and B.C.D. Cooman, Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel During Hot Dip Galvanizing, Metall. Mater. Trans. A, 2014, 45(10), p 4484-4498CrossRefGoogle Scholar
  2. 2.
    L. Cho, G.S. Jung, and B.C.D. Cooman, On the Transition of Internal to External Selective Oxidation on CMnSi TRIP Steel, Metall. Mater. Trans. A, 2014, 45(11), p 5158-5172CrossRefGoogle Scholar
  3. 3.
    T.V.D. Putte, D. Loison, J. Penning, and S. Claessens, Selective Oxidation of a CMnSi Steel During Heating to 1000 °C: Reversible SiO2, Oxidation. Metall. Mater. Trans. A, 2008, 39(12), p 2875ADSCrossRefGoogle Scholar
  4. 4.
    J. Oh, L. Cho, M. Kim, K. Kang, and B.C.D. Cooman, The Effect of Bi on the Selective Oxide Formation on CMnSi TRIP Steel, Metall. Mater. Trans. A, 2016, 47(11), p 5474-5486CrossRefGoogle Scholar
  5. 5.
    A. Chakraborty, A. Mondal, M. Dutta, and S.B. Singh, Suppression of Selective Surface Oxidation in DP Steels by Effective Shielding of Copper—Kinetic Simulation and Experimental Validation, Surf. Coat. Technol., 2016, 306, p 473-479CrossRefGoogle Scholar
  6. 6.
    H.H. Shu, C. Cédric, J. Angulo, and G. Fricout, Relation Between Emissivity Evolution During Annealing and Selective Oxidation of TRIP Steel, Corros. Sci., 2017,  https://doi.org/10.1016/j.corsci.2017.12.032 Google Scholar
  7. 7.
    F. Li, H.C. Liu, W. Shi, and L. Li, Thermodynamic Consideration on Selective Surface Oxidation of High Strength Steels Prior to Hot-Dip Galvanizing, J. Coat. Technol. Res., 2011, 8(5), p 639-647CrossRefGoogle Scholar
  8. 8.
    P.R. Wilson and Z. Chen, The Effect of Manganese and Chromium on Surface Oxidation Products Formed During Batch Annealing of Low Carbon Steel Strip, Corros. Sci., 2007, 49(3), p 1305-1320CrossRefGoogle Scholar
  9. 9.
    E. Clauberg, C. Uebing, and H.J. Grabke, Effect of Segregated Antimony on the Oxidation of Fe-4%Sb Single Crystals, Appl. Surf. Sci., 1999, 143(1-4), p 206-214ADSCrossRefGoogle Scholar
  10. 10.
    E. Clauberg, C. Uebing, and H.J. Grabke, Surface Segregation on Fe-25%Cr-2%Ni-0.1%Sb Single Crystals, Surf. Sci., 1999, 433-435, p 617-621ADSCrossRefGoogle Scholar
  11. 11.
    E. Clauberg, J. Janověc, C. Uebing, H. Viefhaus, and H.J. Grabkeet, Surface Segregation on Fe-25%Cr-2%Ni-0.14%Sb-N, S(100) Single Crystal Surfaces, Appl. Surf. Sci., 2000, 161(1-2), p 35-46ADSCrossRefGoogle Scholar
  12. 12.
    Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, and S. Yamaguchi, Thermodynamic Analysis of Selective Oxidation Behavior of Si and Mn-Added Steel During Recrystallization Annealing, ISIJ Int., 2009, 96(1), p 11-20Google Scholar
  13. 13.
    H. Liu, F. Li, W. Shi, S. Swaminathan, Y. He, M. Rohwerder, and L. Li, Challenges in Hot-Dip Galvanizing of High Strength Dual Phase Steel: Surface Selective Oxidation and Mechanical Property Degradation, Surf. Coat. Technol., 2012, 206(16), p 3428-3436CrossRefGoogle Scholar
  14. 14.
    Y.L. Zhang, Y.Y. Zhang, F.H. Yang, and Z.T. Zhang, Effect of Alloying Elements (Sb, B) on Recrystallization and Oxidation of Mn-Containing, J. Iron. Steel Res. Int., 2013, 20(3), p 39-44.  https://doi.org/10.13228/j.boyuan.issn1006-706x.2013.03.004 CrossRefGoogle Scholar
  15. 15.
    Z.T. Zhang, I.R. Sohn, F.S. Pettit, G.H. Meier, and S. Sridhar, Investigation of the Effect of Alloying Elements and Water Vapor Contents on the Oxidation and Decarburization of Transformation-Induced Plasticity Steels, Metall. Mater. Trans. B, 2009, 40(4), p 567-584CrossRefGoogle Scholar
  16. 16.
    H. Okamoto, Fe-Sb (Iron-Antimony), J. Phase Equilib., 1999, 20(2), p 166CrossRefGoogle Scholar
  17. 17.
    Y.B. Zhang, C.R. Li, Z.M. Dua, C.P. Guo, J.Q. Li, and M. Liu, Supplementary Measurements of the Primary Crystalline Phases of the Co-Ni-Sb and the Co-Fe-Sb Ternary Systems, J. Alloys Compd., 2011, 509(15), p 4944-4949CrossRefGoogle Scholar
  18. 18.
    Z.X. Zhu, X.P. Su, F.C. Yin, H. Tu, and C.J. Wu, 450 C Isothermal Section of the Zn-Fe-Sb Ternary Phase Diagram, J. Alloys Compd., 2010, 490(1-2), p 541-547CrossRefGoogle Scholar
  19. 19.
    H. Okamoto, Cr-Sb (Chromium-Antimony), J. Phase Equilib., 1992, 13(4), p 438-439CrossRefGoogle Scholar
  20. 20.
    J.O. Andersson and S. Bo, Thermodynamic Properties of the CrFe System, CALPHAD, 1987, 11(1), p 83-92CrossRefGoogle Scholar
  21. 21.
    T.B. Massalski, Binary Alloy Phase Diagrams, ASM Met. Handb., 1992, 3, p 206Google Scholar
  22. 22.
    X.P. Su, N.Y. Tang, and J.M. Toguri, 450 °C Isothermal Section of the Fe-Zn-Si Ternary Phase Diagram, Can. Metall. Q., 2013, 40(3), p 377-384CrossRefGoogle Scholar
  23. 23.
    G. Lefevre, M. Ulrich, F. Behar, C. Servant, and G. Cizeronet, Structures des phases Fe1+xSb ET FeSb2, J. Less Common Met., 1978, 60(2), p 283-299CrossRefGoogle Scholar
  24. 24.
    T. Rosenqvist, Magnetic and Crystallographic Studies on the Higher Antimonies of Iron, Cobalt and Nickel, Acta Metall., 1953, 1(6), p 761-763CrossRefGoogle Scholar
  25. 25.
    N. Bochvar, T. Dobatkina, O. Fabrichnaya, V. Ivanchenko, and D.M. Cupid, Aluminium-Chromium-Titanium, Springer, Berlin, 2009, p 72-108Google Scholar
  26. 26.
    M. Venkatraman and J.P. Neumann, The Cr-Sb (Chromium-Antimony) System, Bull. Alloy Phase Diagr., 1990, 11(5), p 435-440CrossRefGoogle Scholar
  27. 27.
    I.V. Chumak, V.V. Pavlyuk, G.S. Dmytriv, and J.S. Dammb, Phase Equilibria and Crystal Structure of Compounds in the Fe-Zn-Sb System at 570 K, J. Alloys Compd., 2000, 307(1-2), p 223-225CrossRefGoogle Scholar
  28. 28.
    H. Takizawa, K. Uheda, and T. Endo, New Ferromagnetic Polymorph of CrSb2 Synthesized Under High Pressure, J. Alloys Compd., 1999, 287(1), p 145-149CrossRefGoogle Scholar
  29. 29.
    A.M.V. Kraan and K.H.J. Buschow, The 57Fe Mössbauer Isomer Shift In Intermetallic Compounds of Iron, Physica B + C, 1986, 138(1), p 55-62ADSGoogle Scholar
  30. 30.
    A. Kallel, H. Boller, and E.F. Bertaut, Helimagnetism in MnP-Type Compounds: MnP, FeP, CrAs and CrAs1−x Sbx, Mixed Crystals, J. Phys. Chem. Solids, 1974, 35(9), p 1139-1152ADSCrossRefGoogle Scholar
  31. 31.
    E. Kabliman, P. Blaha, K. Schwarz, A.V. Ruban, and B. Johansson, Ab Initio-Based Mean-Field Theory of the Site Occupation in the Fe-Cr σ-Phase, Phys. Rev. B., 2011, 83(9), p 92201-92205ADSCrossRefGoogle Scholar
  32. 32.
    A. Kjekshus, P.G. Peterzéns, T. Rakke, A.F. Andresen, and E. Hoyer, Compounds with the Marcasite Type Crystal Structure. XIII. Structural and Magnetic Properties of Cr(t)Fe(1-t)As2, Cr(t)Fe(1-t)Sb2, Fe(1-t)Ni(t)As2 and Fe(1-t)Ni(t)Sb2, Acta Chem. Scand., 1979, 33, p 469-480CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Yukuan Xia
    • 1
  • Ya Liu
    • 1
    • 2
  • Changjun Wu
    • 1
    • 2
  • Haoping Peng
    • 1
    • 2
  • Hao Tu
    • 1
    • 2
  • Jianhua Wang
    • 1
    • 2
  • Xuping Su
    • 1
    • 2
  1. 1.Jiangsu Key Laboratory of Materials Surface Science and TechnologyChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations