Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 4, pp 387–400 | Cite as

Phase Transformations in Co-Ni-Cr-W Alloys During High Temperature Exposure to Steam Environment

  • J. Zhang
  • L. Garcia-Fresnillo
  • A. Jalowicka
  • R. Pillai
  • D. Naumenko
  • W. J. Quadakkers


Three model alloys, Co-10Ni-20Cr-15W, Co-30Ni-20Cr-15W and Ni-20Cr-15W (all in wt.%) were investigated in Ar-50%H2O at 700 and 750 °C for up to 3000 h reaction. The results showed the formation of thin chromia scales on the sample surfaces in all cases. For the Co-base alloys, accompanied by the Cr2O3 formation, a chromium depletion zone was detected underneath the oxide scale along with Co3W with some amount of dissolved Cr and Ni. This kind of Co3W was enriched along the oxide/alloy interface. The formation of this intermetallic phase was considered to follow nucleation and subsequent growth based on morphology and composition analyses. Increasing nickel content reduced the amount of Co3W formation. For the nickel-base alloy Ni-20Cr-15W, no intermetallic phase was detected. The formation of the Co3W intermetallic was discussed based on phase transformation induced by chromium depletion. The effect of nickel on this phenomenon was also discussed according to thermodynamic phase equilibrium analysis.


chromia scale Co-Ni-Cr-W alloys Co3W intermetallic Cr depletion phase transformation steam oxidation 



The authors are grateful to Mr. H. Cosler, Ms. A. Kick, and R. Mahnke for carrying out the oxidation tests, Dr. E. Wessel and Dr. D. Grüner for SEM/EBSD investigations, and Mr. M. Borzikov for SNMS measurements. The Central Institute for Engineering, Electronics and Analytics (ZEA-3) is also acknowledged for ICP-OES analyses.


  1. 1.
    G.E. Maurer and A.D. Patel, Alloy Design and Processing Challenges for Advanced Power Systems: An Alloy Producer’s Perspective, Adv. Sci. Technol., 2010, 72, p 22–30CrossRefGoogle Scholar
  2. 2.
    L. Garcia-Fresnillo, A. Chyrkin, C. Bohme, J. Barnikel, F. Schmitz, and W.J. Quadakkers, Oxidation Behaviour and Microstructural Stability of Alloy 625 During Long-Term Exposure in Steam, J. Mater. Sci., 2014, 49, p 6127–6142ADSCrossRefGoogle Scholar
  3. 3.
    A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and W.J. Quadakkers, Sub-Scale Depletion and Enrichment Processes During High Temperature Oxidation of the Nickel Base Alloy 625 in the Temperature Range 900-1000°C, Oxid. Met., 2011, 75, p 143–166CrossRefGoogle Scholar
  4. 4.
    G. Wood and T. Hodgkiess, Characteristic Scales on Pure Nickel-Chromium Alloys at 800°-1200° C, J. Electrochem. Soc., 1966, 113, p 319–327CrossRefGoogle Scholar
  5. 5.
    C. Giggins and F. Pettit, Oxidation of Ni-Cr Alloys Between 800 and 1200 C, Trans. Metall. Soc. AIME, 1969, 245, p 2495–2507Google Scholar
  6. 6.
    Y. Xie, J. Zhang, and D.J. Young, Temperature Effect on Oxidation Behavior of Ni-Cr Alloys in CO2 Gas Atmosphere, J. Electrochem. Soc., 2017, 164, p C285–C293CrossRefGoogle Scholar
  7. 7.
    M. Michalik, M. Hänsel, J. Zurek, L. Singheiser, and W.J. Quadakkers, Effect of Water Vapour on Growth and Adherence of Chromia Scales Formed on Cr in High and Low pO2-Environments at 1000 and 1050°C, Mater. High Temp., 2005, 22, p 213–221CrossRefGoogle Scholar
  8. 8.
    E. Essuman, G.H. Meier, J. Zurek, M. Hänsel, T. Norby, L. Singheiser, and W.J. Quadakkers, Protective and Non-protective Scale Formation of NiCr Alloys in Water Vapour Containing high- and Low-pO2 Gases, Corros. Sci., 2008, 50, p 1753–1760CrossRefGoogle Scholar
  9. 9.
    D. Simon, B. Gorr, M. Hänsel, V. Shemet, H.J. Christ, and W.J. Quadakkers, Effect of In-Situ Gas Changes on Thermally Grown Chromia Scales Formed on Ni-25Cr Alloy at 1000°C in Atmospheres With and Without Water Vapour, Mater. High Temp., 2015, 32, p 238–247CrossRefGoogle Scholar
  10. 10.
    L. Garcia-Fresnillo, A. Chyrkin, T. Huttel, C. Böhme, J. Barnikel, D. Grüner, F. Schmitz, and W.J. Quadakkers, Oxide Scale Formation and Subsurface Phase Transformations During Long-Term Steam Exposure of the Cobalt Base Alloy 25, Mater. Corros., 2012, 63, p 878–888CrossRefGoogle Scholar
  11. 11.
    P.A. Carvalho, P.M. Bronsveld, B.J. Kooi, and JThM De Hosson, On the fcc-D019 Transformation in Co-W Alloys, Acta Mater., 2002, 50, p 4511–4526CrossRefGoogle Scholar
  12. 12.
    D.W. Bray and J.M. Howe, High-Resolution Transmission Electron Microscopy Investigation of the Face-Centered Cubic/Hexagonal Close-Packed Martensite Transformation in Co-31.8 wt pct Ni Alloy: Part 1. Plate Interfaces and Growth Ledges, Metall. Mater. Trans. A, 1996, 27, p 3362–3370CrossRefGoogle Scholar
  13. 13.
    C. Asensio, A. Chyrkin, L. Niewolaka, V. Konoval, H. Hattendorf, B. Kuhn, L. Singheiser, and W.J. Quadakkers, Subsurface Depletion and Enrichment Processes During Oxidation of a High Chromium, Laves-Phase Strengthened Ferritic Steel, Electrochem. Solid State Lett., 2011, 14, p 17–20CrossRefGoogle Scholar
  14. 14.
    C. Asensio-Jimenez, L. Niewolaka, H. Hattendorf, B. Kuhn, P. Huczkowski, and W.J. Quadakkers, Effect of Specimen Thickness on the Oxidation Rate of High Chromium Ferritic Steels: The Significance of Intrinsic Alloy Creep Strength, Oxid. Met., 2013, 79, p 15–28CrossRefGoogle Scholar
  15. 15.
    L. Garcia-Fresnillo, G.H. Meier, and W.J. Quadakkers, Oxidation-induced microstructural changes in Ni- and Co-based alloys and ferritic steels at high temperature, in The 42nd International Conference on Metallurgical Coatings and Thin Films (ICMCTF), 20-24th April 2015, San Diego, CA, USAGoogle Scholar
  16. 16.
    F. Pettit, Hot Corrosion of Metals and Alloys, Oxid. Met., 2011, 76, p 1–21CrossRefGoogle Scholar
  17. 17.
    W.J. Quadakkers and J. Zurek, Sheir’s Corrosion, Vol 1, J.A. Richardson, Ed., Elsevier, Amsterdam, 2010, p 407 Google Scholar
  18. 18.
    J.-P. Pfeifer, H. Holzbrecher, W.J. Quadakkers, U. Breuer, and W. Speier, Quantitative Analysis of Oxide Films on ODS-Alloys Using MCs+-SIMS and e-Beam SNMS, Fresenius’ J. Anal. Chem., 1993, 346b, p 186–191CrossRefGoogle Scholar
  19. 19.
    TCS Ni-based Superalloys Database, TCNI7, Thermo-Calc, Software ABGoogle Scholar
  20. 20.
    C. Wagner, Theoretical Analysis of the Diffusion Processes Determining the Oxidation Rate of Alloys, J. Electrochem. Soc., 1952, 99, p 369–380CrossRefGoogle Scholar
  21. 21.
    B.D. Bastow, D.P. Whittle, and G.C. Wood, Alloy Depletion Profiles Resulting from the Preferential Removal of the Less Noble Metal During Alloy Oxidation, Oxid. Met., 1978, 12, p 413–438CrossRefGoogle Scholar
  22. 22.
    D.J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed., Elsevier Science, Amsterdam, 2016Google Scholar
  23. 23.
    M.S. Seltzer and B.A. Wilcox, Diffusion of Chromium and Aluminium in Ni-20Cr and TDNiCr (Ni-20Cr-2ThO2), Metall. Trans., 1972, 3, p 2357–2362CrossRefGoogle Scholar
  24. 24.
    P. Zieba, G. Cliff, and G.W. Lorimer, Discontinuous Precipitation in Cobalt-Tungsten Alloys, Acta Mater., 1997, 45, p 2093–2099CrossRefGoogle Scholar
  25. 25.
    F. Xue, M. Wang, and Q. Feng, in Superalloys 2012, ed. E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman (TMS, 2012), pp. 813–821Google Scholar
  26. 26.
    J. Zhu, M.S. Titua, and T.M. Pollock, Experimental Investigation and Thermodynamic Modelling of the Co-Rich Region in the Co-Al-Ni-W Quaternary System, J. Phase Equilibria Diffus., 2014, 35, p 595–611CrossRefGoogle Scholar
  27. 27.
    P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, 1995Google Scholar
  28. 28.
    T. Takayama, M.Y. Wey, and T. Nishizawa, Effect of Magnetic Transition on the Solubility of Alloying Elements in BCC Iron and FCC Cobalt, Trans. JIM, 1981, 22, p 315–325CrossRefGoogle Scholar
  29. 29.
    H.J. Grabke, E.M. Muller-Lorenz, S. Strauss, E. Pippel, and J. Woltersdorf, Effects of Grain Size, Cold Working, and Surface Finish on the Metal-Dusting Resistance of Steels, Oxid. Met., 1998, 50, p 241–254CrossRefGoogle Scholar
  30. 30.
    L. Niewolak, L. Garcia-Fresnillo, G.H. Meier, and W.J. Quadakkers, Sigma-Phase Formation in High Chromium Ferritic Steels at 650°C, J. Alloy. Compd., 2015, 638, p 405–418CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.ITP Aero, Industria de Turbo Propulsores S.A.UZamudioSpain
  3. 3.Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK-2)JülichGermany

Personalised recommendations