Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 4, pp 377–386 | Cite as

The 600 °C Isothermal Section of the Zn-Al-La Ternary System

  • Haoping Peng
  • Shouwu Xu
  • Jianhua Wang
  • Ya Liu
  • Xiaofeng Lai
  • Xuping Su
Article
  • 120 Downloads

Abstract

The 600 °C isothermal section of the Zn-Al-La ternary system was experimentally determined using scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction and equilibrated alloy method. The results indicate that nine three-phase regions have been identified in the Zn-Al-La ternary system at 600 °C. No new ternary compound was found in the system. La-Zn and La-Al compounds can dissolve a certain amount of Al and Zn, respectively. The solubility of Al in LaZn, LaZn5 and La3Zn22 phases is 18.6, 2.6 and 9.0 at.%, respectively, and the solubility of Al in La2Zn17 and LaZn11 phases is 17.1 and 6.3 at.%, respectively. The solubility of Zn in Al4La5, AlLa, Al2La and Al3La phases is 7.8, 7.8, 25.3 and 15.2 at.%, respectively. The ternary compound Zn2Al2La has a larger composition range, and its chemical composition can be roughly expressed as La (ZnxAl1−x)4 (0.2875 ≤ x ≤ 0.6875).

Keywords

aluminize intermetallic oil-piping phase diagram Zn-Al-La 

Notes

Acknowledgments

This investigation is supported by National Natural Science Foundation of China (Nos. 51671037 and 51471037), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).

References

  1. 1.
    A. Groysman, Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry Koroze A Ochrana Materialu, 2017Google Scholar
  2. 2.
    D. Lee, J. Lee, C.C. Chen and A. Lin, Evaluation of the Anti-Corrosion Capacity for Various Electronics by Way of Accelerated Corrosion Testing Platform, 2016 (Taipei), p 159–163Google Scholar
  3. 3.
    X.R. Guan, D.L. Zhang, J.J. Wang, Y.H. Jin, and Y. Li, Numerical and Electrochemical Analyses on Carbon Dioxide Corrosion of X80 Pipeline Steel Under Different Water Film Thicknesses in NACE Solution, J. Nat. Gas Sci. Eng., 2017, 37, p 199-216CrossRefGoogle Scholar
  4. 4.
    S.Q. Xue, X.M. Wang, B. Lin, D.Q. Chen and R.M. Li, Effect of Heat Treatment Process on Mechanical Properties of Aluminized Steel, 2017 (Hunan), p 104–106Google Scholar
  5. 5.
    M.A. Abro and D.B. Lee, High Temperature Corrosion of Hot-Dip Aluminized Steel in Ar/1%SO2 gas, Met. Mater. Int., 2017, 23(1), p 92-97CrossRefGoogle Scholar
  6. 6.
    Y. Xue and X.M. Li, Effect of La Addition on as-Cast Microstructure of Al-Zn-Mg-Cu Alloy, Foundry Technol., 2017, 38(4), p 767-770Google Scholar
  7. 7.
    H. Chen, J.C. Yu, Y.P. Wang, M. Huang, and Y. Wang, Effects of Rare Earth Addition on the Microstructure and Properties of Low-Temperature Aluminized Coating on Oil Casing Steel N80, Heat Treat. Technol. Equip., 2015, 36(5), p 27-30Google Scholar
  8. 8.
    W. Zhang, J. Wen, J.M. Zhang, and Z.K. Fan, Effect of Rare Earth Elements on Kinetics of Hot Dip Aluminizing, Chin. Rare Earths, 2005, 26(6), p 29-32Google Scholar
  9. 9.
    M.Y. He, L. Liu, S.M. Wang, X.J. Zhao, and X. Zhao, Effect of Rare Earth on Formation and Property of Coating Deposited by Mechanical Plating Without Crystallizing, T. Mater. Heat Treat., 2008, 29(2), p 145-149Google Scholar
  10. 10.
    D. Yang, J.S. Chen, Q. Han, and K.R. Liu, Effects of Lanthanum Addition on Corrosion Resistance of Hot-Dipped Galvalume Coating, J. Rare Earths, 2009, 27(1), p 114-118CrossRefGoogle Scholar
  11. 11.
    G.X. Wu, J.Y. Zhang, Q. Li, K.C. Chou, and X.C. Wu, Microstructure and Thickness of 55 pct Al-Zn-1.6 pct Si-0.2 pct RE Hot-Dip Coatings: experiment, thermodynamic, and first-principles study, Metal. Mater. Trans. B, 2011, 43(1), p 198-205CrossRefGoogle Scholar
  12. 12.
    A.Z. Ikromov, I.N. Ganiev, and V.V. Kinzhibalo, Phase Equilibrium of Al-Zn-La System at 573 K, Dokl. Akad Nauk Tadzh, SSR, 1990, 33, p 173-176Google Scholar
  13. 13.
    J.L. Murray, The Al-Zn(Aluminum-Zinc)system, Bull. Alloy Phase Diagr., 1983, 4(1), p 55-73CrossRefGoogle Scholar
  14. 14.
    Q.F. Peng, F.S. Chen, B.S. Qi, and Y.S. Wang, Measurement of Al-Zn Phase Diagram by Acoustic Emission During Solidification. Proceedings of the 95th Annual Meeting of the Transactions of the American Foundrymen's Society, 1991, p 199-202Google Scholar
  15. 15.
    H. Araki, Y. Minamino, T. Yamane, K. Azuma, Y.S. Kang, and Y. Miyamoto, Partial Phase Diagrams of the Aluminium-Rich Region of the Al-Zn System at 0.1 MPa and 2.1 GPa, J. Mater. Sci. Lett., 1992, 11(3), p 181-183CrossRefGoogle Scholar
  16. 16.
    H. Okamoto, Al-La (Aluminum-Lanthanum), J. Phase Equilib. Diffus., 2007, 28(6), p 581CrossRefGoogle Scholar
  17. 17.
    K.A. Gschneidner and F.W. Calderwood, The AI-La (Aluminum-Lanthanum) System, Bull. Alloy Phase Diagr., 1988, 9(6), p 686-689CrossRefGoogle Scholar
  18. 18.
    N.M. Belyavina, V.Y. Markiv, and V.V. Zavodyanny, Crystal structure of the “La5Al4” Compound, J. Alloys Compd., 2004, 367(1–2), p 132-136CrossRefGoogle Scholar
  19. 19.
    Y.Q. Chen, Q. Feng, L.M. Zeng, J.J. He, and W. He, Phase Relationships of the La–Al–Sb System at 773 K from 0 to 50.0 at.% Sb, J. Alloys Comp., 2010, 492(1–2), p 208-212CrossRefGoogle Scholar
  20. 20.
    A. Iandelli, The Physical Chemistry of Metallic Solutions and Intermetallic Compoubds, Natl. Phys. Lab., 1959, 1(9), p 3F-2-3F-11Google Scholar
  21. 21.
    B.A. Rao, P. Kistaiah, N.R. Reddy, and K.S. Murthy, Thermal Expansion of Lanthanum Dialuminide, J. Mater. Sci. Lett., 1982, 1(10), p 432-434CrossRefGoogle Scholar
  22. 22.
    E.E. Having, Influence of Repulsive Energy on Structural Parameters of Close-Packed Metal Structures, J. Less Common Met., 1975, 41(2), p 241-254CrossRefGoogle Scholar
  23. 23.
    A.H.G.D. Mesquita and K.H.J. Buschow, The Crystal Structure of So-Called α-LaAl4 (La3Al11), Acta Crystallogr., 1967, 22(4), p 497-501CrossRefGoogle Scholar
  24. 24.
    L. Rolla and A. Iandelli, Metals and Alloys of the Rare Earths. I. The system lanthanum-zinc, Ric. Sci., 1941, 20, p 1216-1226Google Scholar
  25. 25.
    A. Berche, P. Benigni, J. Rogez, and M.C. Record, New Experimental Investigation of the Lanthanum Zinc Phase Diagram, Thermochim. Acta, 2011, 523(1), p 70-78CrossRefGoogle Scholar
  26. 26.
    J. Pierre, R.M. Galera, and E. Siaud, Evidence for Kondo-Type Behaviour in CexR1-xM Compounds with R = La, Y and M = Mg, Zn, J. de Phys., 1985, 46(4), p 621-626CrossRefGoogle Scholar
  27. 27.
    M.L. Fornasini, F. Merlo, and G.B. Bonino, Sui Composti Di Formula MX2 Formati Dalle Terre Rare Con Lo Zinco, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat Rend, 1967, 43, p 357-363Google Scholar
  28. 28.
    I. Oshchapovsky, V. Pavlyuk, G. Dmytriv, and A. Griffin, Lanthanum tetrazinc, LaZn4, Acta Crystallogr. Sect. C Cryst. Struct. Commun., 2012, 68, p 37-40CrossRefGoogle Scholar
  29. 29.
    N. H., Die Kristallstrukturen von Ni5Ce, Ni5La, Ni5Ca, Cu5La, Cu5Ca, Zn5La, Zn5Ca, Ni2Ce, MgCe, MgLa und MgSr, Z. Metallkd, 1942, 34, p 247–253Google Scholar
  30. 30.
    P.I. Kripyakevich, Y.B. Kuz’ma, and N.S. Ugrin, Crystal Structures of the Compounds Ce3Zn22, La3Zn22, and Pr3Zn22, J. Struct. Chem., 1967, 8(4), p 632-633CrossRefGoogle Scholar
  31. 31.
    T. Siegrist and Y.L. Page, Crystal Chemistry of Some Th2Zn17-Type Rare-Earth-Zinc Phases, J. Less Common Met., 1987, 127(1), p 189-197CrossRefGoogle Scholar
  32. 32.
    I. Johnson and R.M. Yonco, Thermodynamics of Cadmium- and Zinc-Rich Alloys in the Cd–La, Cd–Ce, Cd–Pr, Zn–La, Zn–Ce and Zn–Pr Systems, Metall. Trans., 1970, 1(4), p 905-910Google Scholar
  33. 33.
    V. Contardi, G. Zanicchi, R. Marazza, and R. Ferro, On Some Ternary La-Co-Zn Alloys, J. Less Common Metals, 1983, 90(2), p L25-L26CrossRefGoogle Scholar
  34. 34.
    X.P. Su, N.Y. Tang, and J.M. Toguri, 450 °C Isothermal Section of the Fe-Zn-Si Ternary Phase Diagram, Can. Metall. Q., 2013, 40(3), p 377-384CrossRefGoogle Scholar
  35. 35.
    Y.M. Han, The Isothermal Section of the RE-Sn-Zn(RE = Pr,Ce) System at 400 °C and the Performance Test of the Related Lead-Free Solder. Guangxi University, 2012Google Scholar
  36. 36.
    T. Heumann and N.A. Dittrich, Structure Character of the Fe2Al5 Intermetallics Compound in Hot Dip Aluminizing Process Z, Metallkd., 1959, 50(10), p 617-625Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Haoping Peng
    • 1
    • 2
    • 3
  • Shouwu Xu
    • 2
  • Jianhua Wang
    • 1
    • 3
  • Ya Liu
    • 1
    • 3
  • Xiaofeng Lai
    • 1
  • Xuping Su
    • 1
    • 3
  1. 1.Jiangsu Key Laboratory of Material Surface Science and TechnologyChangzhou UniversityJiangsuPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory of Oil & Gas Storage and Transportation TechnologyChangzhou UniversityJiangsuPeople’s Republic of China
  3. 3.Jiangsu Collaborative Innovation Center of Photovolatic Science and EngineeringChangzhou UniversityJiangsuPeople’s Republic of China

Personalised recommendations