Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 2, pp 255–272 | Cite as

Thermodynamic Properties of Tantalum

  • J. W. Arblaster
Article
  • 25 Downloads

Abstract

The thermodynamic properties of tantalum have been evaluated to 5800 K. Selected values include an enthalpy of sublimation of 781 ± 4 kJ/mol at 298.15 K and a boiling point at one atmosphere pressure of 5762 K.

Keywords

gas liquid solid tantalum thermodynamic properties 

References

  1. 1.
    J.W. Arblaster, Thermodynamic Properties of Silver, J. Phase Equilib. Diffus., 2015, 36(6), p 573-591CrossRefGoogle Scholar
  2. 2.
    J.W. Arblaster, Thermodynamic Properties of Gold, J. Phase Equilib. Diffus., 2016, 37(2), p 229-245CrossRefGoogle Scholar
  3. 3.
    J.W. Arblaster, Thermodynamic Properties of Beryllium, J. Phase Equilib. Diffus., 2016, 37(5), p 581-591CrossRefGoogle Scholar
  4. 4.
    J.W. Arblaster, Thermodynamic Properties of Copper, J. Phase Equilib. Diffus., 2015, 36(5), p 422-444CrossRefGoogle Scholar
  5. 5.
    J.W. Arblaster, Thermodynamic Properties of Hafnium, J. Phase Equilib. Diffus., 2014, 35(4), p 490-501CrossRefGoogle Scholar
  6. 6.
    J.W. Arblaster, Thermodynamic Properties of Niobium, J. Phase Equilib. Diffus., 2017, 38(5), p 707-722CrossRefGoogle Scholar
  7. 7.
    J.W. Arblaster, Thermodynamic Properties of Vanadium, J. Phase Equilib. Diffus., 2017, 38(1), p 51-64CrossRefGoogle Scholar
  8. 8.
    A. Inaba, Superconductive Transition Point of Tantalum and Niobium as a Reference Temperature, Jpn. J. Appl. Phys., 1980, 19, p 1553-1559ADSCrossRefGoogle Scholar
  9. 9.
    E.Rudy and D.P.Harmon, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems, Air Force Materials Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, Rept. AFML-TR-65-2, Part I, Volume V (1965)Google Scholar
  10. 10.
    J.P. Pemsler, Thermodynamics of the Interaction of Niobium and Tantalum with Oxygen and Nitrogen at Temperatures Near the Melting Point, J. Electrochem. Soc., 1961, 108, p 744-750CrossRefGoogle Scholar
  11. 11.
    J.P. Hiernaut, R. Beukers, M. Hoch, T. Matsui, and R.W. Ohse, Determination of the Melting Point and of the Spectral and Total Emissivities of Tungsten, Tantalum and Molybdenum in the Solid and Liquid States using a Six-Wavelength Pyrometer, High Temp. High Press., 1986, 18, p 627-633Google Scholar
  12. 12.
    J.P. Hiernaut, F. Sakuma, and C. Ronchi, Determination of the Melting Point and the Emissivity of Refractory Metals with a Six-Wavelength Pyrometer, High Temp. High Press., 1989, 21, p 139-148Google Scholar
  13. 13.
    A. Cezairliyan, J.L. McClure, and A.P. Miiller, Radiance Temperatures (in the Wavelength Range 520-906 nm) of Tantalum at Its Melting Point by a Pulse-Heating Technique, High Temp. High Press., 1993, 25, p 477-484Google Scholar
  14. 14.
    L. Malter and D.B. Langmuir, Resistance, Emissivities and Melting Point of Tantalum, Phys. Rev., 1939, 55, p 743-747ADSCrossRefGoogle Scholar
  15. 15.
    Commission on Isotopic Abundances and Atomic Weights (CIAAW), Atomic Weights of the Elements 2015, ciaaw.org/atomic-weights.htm, Aug. 2015Google Scholar
  16. 16.
    T.B. Douglas, Conversion of Existing Calorimetrically Determined Thermodynamic Properties to the Basis of the International Practical Temperature Scale of 1968, J. Res. Natl. Bur. Stand., 1969, 73A, p 451-470CrossRefGoogle Scholar
  17. 17.
    R.L. Rusby, The Conversion of Thermal Reference Values to the ITS-90, J. Chem. Thermodyn., 1991, 23, p 1153-1161CrossRefGoogle Scholar
  18. 18.
    R.L. Rusby, R.P. Hudson, and M. Durieux, Revised Values for (t90–t68) from 630°C to 1064°C, Metrologia, 1994, 31, p 149-153ADSCrossRefGoogle Scholar
  19. 19.
    R.D. Weir and R.N. Goldberg, On the Conversion of Thermodynamic Properties to the Basis of the International Temperature Scale of 1990, J. Chem. Thermodyn., 1996, 28, p 261-276CrossRefGoogle Scholar
  20. 20.
    R.K. Bollinger, B.D. White, J.J. Neumeier, H.R.Z. Sandim, Y. Susuki, C.A.M. dos Santos, R. Avci, A. Migliori, and J.B. Betts, Observation of a Martensitic Structural Distortion in V, Nb and Ta, Phys. Rev. Lett., 2011, 107, p 0755031-0755034CrossRefGoogle Scholar
  21. 21.
    K.F. Sterrett and W.E. Wallace, Heat Capacities, Entropies and Enthalpies of Tantalum between 12 and 550°K, J. Am. Chem. Soc., 1958, 50, p 3176-3177CrossRefGoogle Scholar
  22. 22.
    R.K. Williams, R.S. Graves, T.L. Hebble, D.L. McElroy, and J.P. Moore, Phonon and Electron Components of the Thermal Conductivity of Tantalum at Intermediate Temperatures, Phys. Rev. B, 1982, 26, p 2932-2942ADSCrossRefGoogle Scholar
  23. 23.
    Y.M. Smirnov and V.A. Finkel’, Crystal Structure of Tantalum, Niobium and Vanadium at 110 to 400°K, Zh. Eksp. Teor. Fiz. 49, 1077–1082 (1965) (Sov. Phys. JETP, 1966, 22, 750–753)Google Scholar
  24. 24.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, 1973Google Scholar
  25. 25.
    L.V. Gurvich, I.V. Veits, V.A. Medvedev, G.A. Bergman, V.S. Yungman, G.A. Khachkuruzov, V.S. Yorish, O.V. Dorofeeva, E.L. Osina, P.I. Tolmach, I.N. Przhevak’skii, I.I. Nazarenko, N.M. Aristova, E.A. Shenyavskaya, L.N. Gorokhov, A.L. Rogatskii, M.E. Efimov, V.Y. Leonidov, Y.G. Khait, A.G. Efimova, S.E. Tomberg, A.V. Gusarov, N.E. Khandamirova, G.N. Yurkov, L.R. Fokin, L.F. Kuratova, and A.D. Gol’dshtein, in Thermodynamic Properties of Individual Substances, ed. V.P. Glushko, L.V. Gurvich, G.A. Bergman, I.V. Veits, V.A. Medvedev, G.A. Khachkuruzov, and V.S. Yungman “Nauka”, Moscow, Vol. 4, (1982)Google Scholar
  26. 26.
    M.W. Chase Jr., NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph No.9, 1998Google Scholar
  27. 27.
    K.D. Maglić, Recommended Specific Heat Capacity Functions of Group VA Elements, Int. J. Thermophys., 2003, 24, p 489-500CrossRefGoogle Scholar
  28. 28.
    V.Y. Bodryakov, Correlation between Temperature Dependences of Thermal Expansivity and Heat Capacity up to the Melting Point of Tantalum, Teplofiz. Vys. Temp. 54, 336–342 (2016) (High Temp. 54, 316–321, 2016)Google Scholar
  29. 29.
    G.J. Sellers, A.C. Anderson, and H.K. Birnbaum, Anomalous Heat Capacities of Niobium and Tantalum Below 1 K, Phys. Rev. B, 1974, 10, p 2771-2776ADSCrossRefGoogle Scholar
  30. 30.
    T. Satoh, A. Sawada, and M. Yamamoto, in Superconducting Specific Heat of Nb-Ta Alloys, Low Temperature Physics – LT 13, Proceedings of the XIIIth International Conference on Low Temperature Physics, University of Colorado, Boulder, Colorado, 21-25 Aug. 1972, Vol. 3: Superconductivity, ed. by K.D. Timmerhaus, W.J. O’Sullivan, and E.F. Hammel (Plenum Press, New York, London, 1974), p 372–376Google Scholar
  31. 31.
    G.J. Sellers, A.C. Anderson, and H.K. Birnbaum, The Anomalous Heat Capacity of Superconducting Niobium, Phys. Lett. A, 1973, 44, p 173-174ADSCrossRefGoogle Scholar
  32. 32.
    Y.L. Shen, Low Temperature Heat Capacities of Vanadium, Niobium and Tantalum, Ph.D. Thesis, University of California, Lawrence Radiation Laboratory, Berkeley, California. U.S. Atomic Energy Commission, Rept. UCRL-16117, 1965Google Scholar
  33. 33.
    H.A. Leupold, G.J. Iafrate, F. Rothwarf, J.T. Breslin, D. Edmiston, and T.R. AuCoin, Low-Temperature Specific Heat Anomalies in the Group V Transition Metals, J. Low Temp. Phys., 1977, 28, p 241-261ADSCrossRefGoogle Scholar
  34. 34.
    G.A.Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, Physical AcousticsPrinciples and Methods, Vol. III, Part B: Lattice Dynamics, W.P.Mason (Ed.), Academic Press, New York, 1965, p 1-42Google Scholar
  35. 35.
    Y. Takahashi and J. Nakamura, The Heat Capacity of Tantalum from 80 to 1000 K, Thermochim. Acta, 1996, 282–283, p 317-322CrossRefGoogle Scholar
  36. 36.
    B.Y. Berezin and V.Y. Chekhovskoi, The Enthalpy of Tantalum between 2400°K and the Melting Temperature, Izv. Akad. Nauk SSSR Metally (3), 63–65 (1977) (Russ. Metall. Metally (3), 51–53, 1977)Google Scholar
  37. 37.
    E. Arpaci and M.G. Frohberg, Enthalpy Measurements on Solid and Liquid Tantalum by Levitation Calorimetry, Z. Metallkde., 1982, 73, p 548-551Google Scholar
  38. 38.
    N.S. Rasor and J.D. McClelland, Thermal Properties of Materials. Part 1. Properties of Graphite, Molybdenum and Tantalum to Their Destruction Temperatures, Wright Air Development Center, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, Rept. WADC-TR-56-400, 1957Google Scholar
  39. 39.
    N.S. Rasor and J.D. McClelland, Thermal Properties of Graphite, Molybdenum and Tantalum to Their Destruction Temperatures, J. Phys. Chem. Solids, 1960, 15, p 17-26ADSCrossRefGoogle Scholar
  40. 40.
    G.W. Lehman, Thermal Properties of Refractory Materials, Wright Air Development Division, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, Rept. WADD-TR-60-581, 1960, p 1–19Google Scholar
  41. 41.
    R.E. Taylor and R.A. Finch, The Specific Heats and Resistivities of Molybdenum, Tantalum and Rhenium from Low to Very High Temperatures, North American Aviation, U.S. Atomic Energy Commission, Rept. NAA-SR-6034, 1961Google Scholar
  42. 42.
    R.E. Taylor and R.A. Finch, The Specific Heat and Resistivities of Molybdenum, Tantalum and Rhenium, J. Less Common Metals, 1964, 6, p 283-294CrossRefGoogle Scholar
  43. 43.
    A. Cezairliyan, J.L. McClure, and C.W. Beckett, High-Speed (Subsecond) Measurement of Heat Capacity, Electrical Resistivity and Thermal Radiation Properties of Tantalum in the Range 1900 to 3200 K, J. Res. Nat. Bur. Stand., 1971, 75A, p 1-13CrossRefGoogle Scholar
  44. 44.
    V.A. Petukhov, V.Y. Chekhovskoi, and A.G. Mozgovoi, Experimental Study of the Thermal Expansion of Various Construction Materials, Tantalum and Tantalum–Tungsten TV-10 Alloy, Teplofiz. Vys. Temp. 15, 534–538 (1977) (High Temp. 15, 449–452, 1977)Google Scholar
  45. 45.
    A.P. Miiller and A. Cezairliyan, Transient Interferometric Technique for Measuring Thermal Expansion at High Temperatures: thermal Expansion of Tantalum in the Range 1500-3200 K, Int. J. Thermophys., 1982, 3, p 259-288ADSCrossRefGoogle Scholar
  46. 46.
    A.P. Miiller and A. Cezairliyan, Interferometric Technique for the Subsecond Measurement of Thermal Expansion at High Temperatures: application to Refractory Metals, Int. J. Thermophys., 1991, 12, p 643-656ADSCrossRefGoogle Scholar
  47. 47.
    F.L. Oetting and J.D. Navratil, Enthalpy of Molybdenum and Tantalum from 298-1400 K, J. Chem. Eng. Data, 1972, 17, p 230-231CrossRefGoogle Scholar
  48. 48.
    J.B. Conway and R.A. Hein, Unpublished work quoted by Hoch [49] Google Scholar
  49. 49.
    M. Hoch, The High Temperature Specific Heat of Body-Centred Cubic Refractory Metals, High Temp. High Press., 1969, 1, p 531-542Google Scholar
  50. 50.
    K.K. Kelley, The Specific Heat of Tantalum at Low Temperatures and the Effect of Small Amounts of Dissolved Hydrogen, J. Chem. Phys., 1940, 8, p 316-322ADSCrossRefGoogle Scholar
  51. 51.
    K.Clusius and C.G.Losa, Ergebnisse der Tieftemperaturforschung XVI. Die Atom- und Elektronenwärme des Tantals zwischen 10° und 273°K, Z. Naturforschg. 10a, 939–943 (1955)Google Scholar
  52. 52.
    J.L. McClure and A. Cezairliyan, Measurement of the Heat of Fusion of Tantalum by a Microsecond-Resolution Transient Technique, Int. J. Thermophys., 1994, 15, p 505-511ADSCrossRefGoogle Scholar
  53. 53.
    G. Pottlacher and A. Seifter, Microsecond Laser Polarimetry for Emissivity Measurements on Liquid Metals at High Temperatures–Application to Tantalum, Int. J. Thermophys., 2002, 23, p 1281-1290CrossRefGoogle Scholar
  54. 54.
    G. Pottlacher, High Temperature Thermophysical Properties of 22 Pure Metals, Edition Keiper, Graz, 2010Google Scholar
  55. 55.
    S.V. Lebedev and G.I. Mozharov, Heat Capacity of Tantalum with Rapid Pulsed Heating by a High-Density Electric Current, Tepolofiz. Vys. Temp. 15, 53–57 (1977) (High Temp. 15, 45–48, 1977)Google Scholar
  56. 56.
    H.G. Kolsky, R.M. Gilmer, and P.W. Gilles, The Thermodynamic Properties of 54 Elements Considered as Ideal Monatomic Gases. U.S. Atomic Energy Commission Rept. LA 2110 (1957)Google Scholar
  57. 57.
    P.J. Mohr, D.B. Newell, and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys., 2016, 88, p 035009-1-035009-73ADSCrossRefGoogle Scholar
  58. 58.
    P.J. Mohr, D.B. Newell, and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, J. Phys. Chem. Ref. Data, 2016, 45, p 043102-1-043102-74ADSCrossRefGoogle Scholar
  59. 59.
    C.E.Moore, Atomic Energy Levels, Nat. Bur. Stand. Nat. Stand. Ref. Data Ser., NSRDS-NBS 35, Vol. III, U.S. Govt. Printing Office, Washington, D.C. (1971)Google Scholar
  60. 60.
    H. Mocnik, B. Arcimowicz, W. Salmhofer, L. Windholz, and G.H. Guthöhrlein, Investigation of the Hyperfine Structure of Ta I-lines (III), Z. Phys. D, 1996, 36, p 129-136ADSCrossRefGoogle Scholar
  61. 61.
    N. Jariz, L. Windolz, D. Messnarz, H. Jäger, R. Engleman, Jr., J.C. Pickering, and H. Jäger, Investigation of the Hyperfine Structure of TaI-Lines (IX), Phys. Scr., 2005, 71, p 611-620ADSCrossRefGoogle Scholar
  62. 62.
    D.B. Langmuir and L. Malter, The Rate of Evaporation of Tantalum, Phys. Rev., 1939, 55, p 748-749ADSCrossRefGoogle Scholar
  63. 63.
    M.D. Fiske, The Temperature Scale, Thermionics, and Thermatomics of Tantalum, Phys. Rev., 1942, 61, p 513-519ADSCrossRefGoogle Scholar
  64. 64.
    R. Szwarc, E.R. Plante, and J.J. Diamond, Vapor Pressure and Heat of Sublimation of Tungsten, J. Res. Nat. Bur. Stand., 1965, 69A, p 417-421CrossRefGoogle Scholar
  65. 65.
    J.W. Edwards, H.L. Johnston, and P.E. Blackburn, Vapor Pressure of Inorganic Substances. IV. Tantalum Between 2624 and 2943°K, J. Am. Chem. Soc., 1951, 73, p 172-174CrossRefGoogle Scholar
  66. 66.
    N.A. Gorbatyi and G.N. Shuppe, On the Effect of Strong Electric Fields (106 v/cm) on the Evaporation and Resistivity of Metals (Mo,Ta,W), Zh. Tekh. Fiz. 28, 623–635 (1958) (Sov. Phys. Tech. Phys. 3, 587–596, 1958)Google Scholar
  67. 67.
    I.V.Golubtsov and A.N. Nesmeyanov, Investigation of the Evaporation of Tungsten, Molybdenum and Tantalum in a Vacuum, Vestn. Mosk. Univ. Ser. II Khim. (5), 31–33 (1965)Google Scholar
  68. 68.
    V.Y. Bodryakov, Heat Capacity of Solid Tantalum: Self-Consistent Calculation, Teplofiz. Vys. Temp. 51, 233–242 (2013) (High Temp. 51, 206–214, 2013)Google Scholar
  69. 69.
    W.H. Keesom and M. Desirant, The Specific Heats of Tantalum in the Normal and in the Superconductive State, Physica, 1941, 8, p 273-288ADSCrossRefGoogle Scholar
  70. 70.
    R.D. Worley, M.W. Zemansky, and H.A. Boorse, Heat Capacities of Vanadium and Tantalum in the Normal and Superconducting Phases, Phys. Rev., 1955, 99, p 447-458ADSCrossRefGoogle Scholar
  71. 71.
    N.M. Wolcott, The Specific Heat of Transition Metals, Conference de Physique des Basses Témperatures, Paris, 2 to 8 Sep. 1955, Centre National de la Recherche Scientifique and UNESCO, Paris, 1956, p 286–289Google Scholar
  72. 72.
    C. Chou, D. White, and H.L. Johnston, Heat Capacity in the Normal and Superconducting States and Critical Field of Niobium, Phys. Rev., 1958, 109, p 788-796ADSCrossRefGoogle Scholar
  73. 73.
    D. White, C. Chou, and H.L. Johnston, Heat Capacity in the Normal and Conducting States and Critical Field of Tantalum, Phys. Rev., 1958, 109, p 797-802ADSCrossRefGoogle Scholar
  74. 74.
    F.J. Morin and J.P. Maita, Specific Heats of Transition Metal Superconductors, Phys. Rev., 1963, 129, p 1115-1120ADSCrossRefGoogle Scholar
  75. 75.
    J.M. Corsan and A.J. Cook, Electronic Specific Heat and Superconducting Properties of Nb-Ta Alloys, Phys. Lett. A, 1968, 28, p 500-501ADSCrossRefGoogle Scholar
  76. 76.
    S.V. Lebedev, A.I. Savvatimski and Yu.B.Smirnov, Measurement of Latent Heats of Fusion for Refractory Metals, Teplofiz. Vys. Temp. 9, 635–638 (1971) (High Temp. 9, 578–581, 1971)Google Scholar
  77. 77.
    M.M. Martynyuk and V.I. Tsapkov, Relationship between the Electrical Resistivity of Niobium, Tantalum, Molybdenum and Tungsten and Their Enthalpy, Izv. Akad. Nauk SSSR Metally (6), 63–67 (1974) (Russ. Metall. Metally (6), 52–55, 1974)Google Scholar
  78. 78.
    S.V. Lebedev and G.I. Mozharov, Determination of the Temperature Dependence of Resistivity of Tantalum in Both the Solid and Liquid States during Rapid Heating with an Electric Current, Teplofiz. Vys. Temp., 1976, 14, p 1266-1269Google Scholar
  79. 79.
    J.W. Shaner, G.R. Gathers, and C. Minichino, Thermophysical Properties of Liquid Tantalum and Molybdenum, High Temp. High Press., 1977, 9, p 331-343Google Scholar
  80. 80.
    G.R. Gathers, Correction of Specific Heat in Isobaric Expansion Data, Int. J. Thermophys., 1983, 4, p 149-157ADSCrossRefGoogle Scholar
  81. 81.
    R. Gallob, H. Jäger, and G. Pottlacher, Recent Results on Thermophysical Data of Liquid Niobium and Tantalum, High Temp. High Press., 1985, 17, p 207-213Google Scholar
  82. 82.
    A. Berthault, L. Arles, and J. Matricon, High-Pressure High-Temperature Thermophysical Measurements on Tantalum and Tungsten, Int. J. Thermophys., 1986, 7, p 167-179ADSCrossRefGoogle Scholar
  83. 83.
    H. Jäger, W. Neff, and G. Pottlacher, Improved Thermophysical Measurements on Solid and Liquid Tantalum, Int. J. Thermophys., 1992, 13, p 83-93ADSCrossRefGoogle Scholar
  84. 84.
    R.S. Hixson, Personal Communication 1990 to Jäger et al. [83] Google Scholar
  85. 85.
    G.H. Guthöhrlein, H. Mocnik, and L. Windholz, A New Energy Level of the Neutral Tantalum Atom, Z. Phys. D, 1995, 35, p 177-178ADSCrossRefGoogle Scholar
  86. 86.
    D. Messnarz and G.H. Guthöhrlein, Investigation of the Hyperfine Structure of TaI-Lines (IV), Eur. Phys. J. D, 2000, 12, p 269-282ADSCrossRefGoogle Scholar
  87. 87.
    B. Arcimowicz, A. Huss, S. Roth, N. Jaritz, D. Messnarz, G.H. Guthöhrlein, H. Jäger, and L. Windholz, Investigation of the Hyperfine Structure of TaI-Lines (V), Eur. Phys. J. D, 2001, 13, p 187-194ADSCrossRefGoogle Scholar
  88. 88.
    N. Jaritz, H. Jäger, and L. Windholz, Investigation of the Hyperfine Structure of TaI-Lines (VI), Eur. Phys. J. D, 2002, 18, p 267-276ADSGoogle Scholar
  89. 89.
    D. Messnarz, N. Jaritz, B. Arcimowicz, V.O. Zilio, R. Engleman, Jr., J.C. Pickering, H. Jäger, G.H. Guthöhrlein, and L. Windholz, Investigation of the Hyperfine Structure of TaI-Lines (VII), Phys. Scr., 2003, 68, p 170-191ADSCrossRefGoogle Scholar
  90. 90.
    N. Jaritz, G.H. Guthöhrlein, L. Windholz, D. Messnarz, R. Engleman, Jr., J.C. Pickering, and H. Jäger, Investigation of the Hyperfine Structure of TaI-Lines (VIII), Phys. Scr., 2004, 69, p 441-450ADSCrossRefGoogle Scholar
  91. 91.
    N. Jaritz, L. Windholz, U. Zaheer, M. Farooq, B. Arcimowicz, R. Engleman, Jr., J.C. Pickering, H. Jäger, and G.H. Guthöhrlein, Investigation of the Hyperfine Structure of TaI-Lines (X), Phys. Scr., 2006, 74, p 211-217ADSCrossRefGoogle Scholar
  92. 92.
    P. Glowacki, Z. Uddin, G.H. Guthöhrlein, L. Windholz, and J. Dembczyński, A Study of the Hyperfine Structure of Ta I, Lines Based on Fourier Transform Spectra and Laser-Induced Fluorescence, Phys. Scr., 2009, 80, p 025301-1-025301-10ADSCrossRefGoogle Scholar
  93. 93.
    T.P.J.H. Babeliowsky, Mass Spectrometric Determination of the Heat of Vaporization of Some Solid Elements, Physica, 1962, 28, p 1160-1169ADSCrossRefGoogle Scholar
  94. 94.
    É.Y. Zandberg, N.I. Ionov, and A.Y. Totegode, Mass-Spectrometric Determination of the Heat of Vaporization of Atoms and Positive Ions in Sublimation of Polycrystalline Rhenium, Tungsten, Tantalum and Molybdenum, Zh. Tekh. Fiz. 35, 1504–1515 (1965) (Sov. Phys. Tech. Phys. 10, 1164–1172, 1966)Google Scholar
  95. 95.
    N. Sasaki, K. Kubo, and M. Asano, Mass Spectrometric Studies of the Work Function and the Heats of Sublimation of Atom and Positive Ion, Mass Spectrom. (Jpn), 1970, 18, p 1189-1194CrossRefGoogle Scholar
  96. 96.
    E. Gebhardt, H.-D. Seghezzi, and H. Keil, Über die Verdampfungsgeschwindigkeit von Tantalum im Vakuum, Z. Metallkde., 1962, 53, p 524-525Google Scholar
  97. 97.
    F. Simon and M. Ruhemann, Untersuchungen über die Spezifischen Wärmen bei Tiefen Temperaturen, Z. Phys. Chem., 1927, 129, p 321-348Google Scholar
  98. 98.
    A. Magnus and H. Holtzmann, Untersuchungen über die Spezifischen Wärme von Tantal, Wolfram und Beryllium zwischen 100 and 900°C, Ann. Physik., 1929, 395, p 585-613ADSCrossRefGoogle Scholar
  99. 99.
    F.M. Jaeger and W.A. Veestra, The Exact Measurement of the Specific Heats of Solid Substances at High Temperature. VI. The Specific Heats of Vanadium, Niobium, Tantalum and Molybdenum, Rec. Trav. Chim., 1934, 53, p 677-687CrossRefGoogle Scholar
  100. 100.
    I.B. Fieldhouse, J.C. Hedge, J.I. Lang, A.N. Takata, and T.E. Watermann, Measurements of Thermal Properties, Armour Research Foundation, Wright Air Development Center, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, Rept. WADC-TR-55-495, Part 1 (1956)Google Scholar
  101. 101.
    M. Hoch, H.L. Johnston, and A. High, Temperature Drop Calorimeter. The Heat Capacities of Tantalum and Tungsten between 1000° and 3000°K, J. Phys. Chem., 1961, 65, p 855-860CrossRefGoogle Scholar
  102. 102.
    M. Pirani, Über die Messung der Spezifischen Wärme fester Körper bei Hohen Temperaturen, Ber. Deut. Physik. Ges., 1912, 10, p 1037-1054Google Scholar
  103. 103.
    D.B. Langmuir and L. Malter, Specific Heat, Heat of Sublimation and Vapor-Pressure Constant of Tantalum, Phys. Rev., 1939, 55, p 1138CrossRefGoogle Scholar
  104. 104.
    J.H. Boggs, R.A. Knezek, and J.A. Wiebelt, Status Report on a Study of the Use of Furnace Calorimetry for the Rapid Determination of Specific Heats of Solids at High Temperature, U.S. Atomic Energy Commission, Rept. AECU-4282 (1959)Google Scholar
  105. 105.
    J.H. Boggs and J.A. Wiebelt, An Investigation of a Particular Comparative Method of Specific Heat Determinations in the Temperature Range of 1500 to 2600°F, U.S. Atomic Energy Commission, Rept. TID-5734 (1960)Google Scholar
  106. 106.
    D.H. Hildenbrand, L.P. Theard, and N.D. Potter, An Experimental Program for Obtaining the Thermodynamic Properties of Propellant Combustion Products. Third Quarterly Technical Summary Report, Aeronutronic Research Laboratories Technical Report, Publ. No. U-1606 (1962)Google Scholar
  107. 107.
    G.C. Lowenthal, The Specific Heat of Metals Between 1200°K and 2400°K, Aust. J. Phys., 1963, 16, p 47-67ADSCrossRefGoogle Scholar
  108. 108.
    Y.A. Kraftmakher, Specific Heat of Tantalum over the Temperature Range 1200-2900°K, Zh. Prikl. Mekhan. i Tekhn. Fiz. (2), 158–160 (1963)Google Scholar
  109. 109.
    Y.A. Kraftmakher, The Modulation Method for Measuring Specific Heat, High Temp. High Press., 1973, 5, p 433-454Google Scholar
  110. 110.
    C. Affortit, Mesure de la Chaleur Spécifique des Métaux Jusqu’à Leur Température de Fusion, Centre d’Etudes Nucleares de Fontenay-aux-Roses, Commissariat à l’Énergie Atomique, Rapp. CEA-R3287 (1967)Google Scholar
  111. 111.
    L.P. Filippov and R.P. Yurchak, High Temperature Investigation of the Thermal Properties of Solids, Inzh. Fiz. Zh. 21, 561–577 (1971) (J. Eng. Phys 21, 1209–1220, 1971)Google Scholar
  112. 112.
    L.P. Filippow, Untersuchung der Thermischen Eigenschaften im Stoff an der Moskauer Universität, Int. J. Heat Mass Transfer, 1973, 16, p 865-885CrossRefGoogle Scholar
  113. 113.
    A.A. Kulish and L.P. Filippov, Determination of the Thermophysical Properties of Group V Metals at High Temperatures by Means of a Study of Deformation Vibrations of Plates, Teplofiz. Vys. Temp. 16, 602–610 (1978) (High Temp. 16, 512–519, 1978)Google Scholar
  114. 114.
    K.E. Gilchrist and S.D. Preston, Thermophysical Property Measurements on Some Neutron Absorbing Materials, High. Temp. High Press., 1979, 11, p 643-651Google Scholar
  115. 115.
    N.D. Milošević, G.S. Vuković, D.Z. Pavičić, and K.D. Maglić, Thermal Properties of Tantalum Between 300 and 2300 K, Int. J. Thermophys., 1999, 20, p 1129-1136CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • J. W. Arblaster
    • 1
  1. 1.DroitwichEngland

Personalised recommendations