Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 2, pp 237–245 | Cite as

Numerical Modeling of Zinc Diffusion During Sherardizing Process

Article
  • 26 Downloads

Abstract

A finite difference method is adopted to simulate the diffusion-controlled growth of Fe-Zn multiphase layers during sherardizing process. The diffusion coefficient is defined as a temperature, composition-dependent function, and the moving of the phase boundaries is constrained by mass conservation criterion in the model. The experimental data of the thickness and concentration of multiphase layers measured by the present work are compared with the simulation results to confirm the reliability of this model in a certain range of temperature and time. Good agreement between the simulation results and the experimental data are observed. The successful simulation result of the phase growth indicates that the presently obtained model is reasonable and reliable.

Keywords

finite difference method numerical modeling sherardizing zinc diffusion 

Notes

Acknowledgment

The financial support from the National Natural Science Foundation of China (Grant No. 51471140) is acknowledged.

References

  1. 1.
    A.R. Marder, The Metallurgy of Zinc-Coated Steel, Mater. Sci., 2000, 45(3), p 191-271ADSGoogle Scholar
  2. 2.
    J.D. Culcasi, P.R. Sere, C.I. Elsner, and A.R. Di Sarli, Control of the Growth of Zinc-Iron Phases in the Hot-dip Galvanizing Process, Surf. Coat. Technol., 1999, 122(1), p 21-23CrossRefGoogle Scholar
  3. 3.
    G. Vourlias, N. Pistofidis, D. Chaliampalias, E. Pavlidou, P. Patsalas, G. Stergioudis, D. Tsipas, and E.K. Polychroniadis, A Comparative Study of the Structure and the Corrosion Behavior of Zinc Coatings Deposited with Various Methods, Surf. Coat. Technol., 2006, 200(22), p 6594-6600CrossRefGoogle Scholar
  4. 4.
    N. Pistofidis, G. Vourlias, D. Chaliampalias, K. Chrysafis, G. Stergioudis, and E.K. Polychroniadis, On the Mechanism of Formation of Zinc Pack Coatings, J. Alloys Compd., 2006, 407(1), p 221-225CrossRefGoogle Scholar
  5. 5.
    N. Pistofidis, G. Vourlias, D. Chaliampalias, K. Chrysafis, G. Stergioudis, and E.K. Polychroniadis, DSC Study of the Deposition Reactions of Zinc Pack Coatings up to 550°C, J. Therm. Anal. Calorim., 2006, 84(1), p 191-194CrossRefGoogle Scholar
  6. 6.
    G. Vourlias, N. Pistofidis, D. Chaliampalias, E. Pavlidou, G. Stergioudi, and E.K. Polychroniadis, Zinc Deposition with Pack Cementation on Low Carbon Steel Substrates, J. Alloys Compd., 2006, 416(1), p 125-130CrossRefGoogle Scholar
  7. 7.
    Y. He, D. Li, D. Wang, Z. Zhang, H. Qi, and W. Gao, Corrosion Resistance of Zn-Al Co-Cementation Coatings on Carbon Steels, Mater. Lett., 2002, 56(4), p 554-559CrossRefGoogle Scholar
  8. 8.
    S. Ploypech, P. Jearanaisilawong, and Y. Boonyongmaneerat, Influence of Thickness of Intermetallic Layers on Fracture resistance of Galvanized Coatings, Surf. Coat. Technol., 2013, 223(6), p 1-5CrossRefGoogle Scholar
  9. 9.
    B.R. Hou, J. Zhang, J.Z. Duan, Y. Li, and J.L. Zhang, Corrosion of Thermally Sprayed Zinc and Aluminium Coatings in Simulated Splash and Tidal Zone Conditions, Corros. Eng. Sci. Technol., 2013, 38(2), p 157-160CrossRefGoogle Scholar
  10. 10.
    P.R. Rios, A Simple Model for Iron Enrichment in Hot-dip Galvanneal Coatings on IF Steel Sheets, ISIJ Int., 1996, 36(3), p 361-362CrossRefGoogle Scholar
  11. 11.
    C.R. Xavier, U.R. Seixas, and P.R. Rios, Further Experim Ental Evidence to Support a Simple Model for Iron Enrichment in Hot-dip Galvanneal Coatings on IF Steel Sheets, ISIJ Int., 1996, 36(10), p 1316-1317CrossRefGoogle Scholar
  12. 12.
    P. R. Rios, in Proceedings of the Fifth International Conference on Zinc and Zinc Alloy Coated Steel Sheet (Galvatech’ 2001), Brussels, Belgium, 2001, p. 519–525Google Scholar
  13. 13.
    G. Ferran and P.R. Rios, Modeling the Coating Iron Content as a Function of Small Changes of Processing Variable in Hotdip Galvannealed Coasting on IF Steel Sheets, ISIJ Int., 2007, 40(9), p 932-934CrossRefGoogle Scholar
  14. 14.
    X. Su, P. Xu, Y. Liu, J. Wang, H. Tu, and C. Wu, Mathematical Modeling and Numerical Simulation of Layer Growth and Phase Transformation During Galvannealing Process, Surf. Coat. Technol., 2012, 206(23), p 5012-5021CrossRefGoogle Scholar
  15. 15.
    D. Wortelen, R. Frieling, H. Bracht, W. Graf, and F. Natrup, Impact of Zinc Halide Addition on the Growth of Zinc-Rich Layers Generated by Sherardizing, Surf. Coat. Technol., 2015, 263, p 66-77CrossRefGoogle Scholar
  16. 16.
    S. Tsuji, Numerical Modeling of Multiphase Diffusion in the Process of Homogenizing in Binary Alloys, Metall. Mater. Trans. A, 2001, 32(3), p 681-690CrossRefGoogle Scholar
  17. 17.
    A.K. Verma, S. Chandra, N. Bandyopadhyay, B.K. Dhindaw, and R.D.K. Misra, Optimization of Galvannealing Parameters Through Numerical Modeling of Galvannealing Process, Metall. Mater. Trans. A, 2009, 40(5), p 1153-1159CrossRefGoogle Scholar
  18. 18.
    V. Raghavan, Fe-Zn (Iron-Zinc), J. Phase Equilib., 2003, 24(6), p 544-545CrossRefGoogle Scholar
  19. 19.
    R.H. Li and B. Liu, The Numerical Solutions of Partial Differential Equation, 3rd ed., Higher Education Press, Beijing, 2009, p 107-149, in ChineseGoogle Scholar
  20. 20.
    Y. Wakamatsu, K. Samura, and M. Onishi, Fe-Zn 系における δ1 相の拡散係数(Diffusion Coefficients in δ1 Phase in the Fe-Zn System), J. Jpn. I. Met., 1977, 41(7), p 664-669, in JapaneseCrossRefGoogle Scholar
  21. 21.
    L.D.A. Santos, L.U. Lopes, and P.A.P. Wendhausen, Synthesis and Characterization of the Fe-Zn Intermetallic Phases Using the Rietveld Method, R. Esc. Minas., 2014, 67(2), p 181-184CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Haiyun Gao
    • 1
    • 2
  • Xiaobo Li
    • 1
    • 2
  • Wenying Feng
    • 1
  • Dian Peng
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringXiangtan UniversityHunanChina
  2. 2.Key Laboratory of Materials Design and Preparation Technology of Hunan ProvinceXiangtan UniversityHunanChina

Personalised recommendations