Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 38, Issue 4, pp 404–415 | Cite as

Revealing the Microstates of Body-Centered-Cubic (BCC) Equiatomic High Entropy Alloys

  • William Yi WangEmail author
  • Jun Wang
  • Deye Lin
  • Chengxiong Zou
  • Yidong Wu
  • Yongjie Hu
  • Shun-Li Shang
  • Kristopher A. Darling
  • Yiguang Wang
  • Xidong Hui
  • Jinshan Li
  • Laszlo J. Kecskes
  • Peter K. Liaw
  • Zi-Kui Liu
Article

Abstract

Attributing to the attractive mechanical properties, e.g., high yield strength and fracture toughness, the atomic and electronic basis for high entropy alloys (HEAs) are under extensive studies. In the present work, the local atomic arrangement of body-centered-cubic (BCC) equiatomic HEAs are revealed by the CN14 cluster-plus-glue-atom model and the 32 atoms special quasirandom structures. Moreover, the cluster-plus-glue-atom model is utilized to generate ordered and disordered configurations. The bonding lengths among the same and different alloying elements are comprehensively compared in term of their partial pair correlation function (PCF). According to the specific (well-defined) position of each partial PCF of the BCC structure, the order–disorder/random configurational transitions are revealed by the absence of partial PCF peaks. Here, the WMoTM1TM2 (TM = Ta, Nb, and V) BCC equiatomic refractory HEAs are selected as a case study. Through mixing various groups of alloying elements, the atomic-size differences not only result in the lattice mismatch/distortion but also yield the formation of weak spots. Their bonding-charge density captures the electron redistributions caused by the coupling effect of the lattice distortion and valance electron differences among various elements, which also presents the physical nature of the loosely-bonded weak spots and the tightly-bonded clusters. It is worth mentioning that both the PCF and the negative enthalpy of mixing can be utilized to characterize the clusters or the short range ordering in the HEAs. The microstates revealed by the cluster-plus-glue-atom model are in line with the novel small set of the ordered structures method reported in the literature.

Keywords

bonding charge density cluster-plus-glue-atom model high entropy alloys small set of ordered structures (SSOS) special quasirandom structures (SQS) 

Notes

Acknowledgments

The present work was financially supported by the National Natural Science Foundation of China (Grants 51690163, 50871013, 51271018, 51271151, and 51571161), the United States National Science Foundation (Grant DMR-1006557), and the US Army Research Laboratory (Project No. W911NF-08-2-0084). WYW acknowledges the support from the project of SKL-AMM-USTB (Grant Number 2016-Z07) and the Fundamental Research Funds for the Central Universities in China (Grant Number G2016KY0302). PKL would like to acknowledge the Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855 and DE-FE-0024054, and DE-FE-0011194), the US Army Research Office project (W911NF-13-1-0438), the National Science Foundation (DMR-1611180), and the Department of Materials Science and Engineering, National Tsing Hua University, Taiwan, for their support. First-principles calculations were carried out on the LION clusters at the Pennsylvania State University supported by the Materials Simulation Center and the Institute for CyberScience and the clusters at the Northwestern Polytechnical University. Calculations were also carried out on the CyberStar cluster funded by NSF through Grant OCI-0821527and the XSEDE clusters supported by NSF through Grant ACI-1053575.

References

  1. 1.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299-303CrossRefGoogle Scholar
  2. 2.
    Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534, p 227-230ADSCrossRefGoogle Scholar
  3. 3.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153-1158ADSCrossRefGoogle Scholar
  4. 4.
    Y. Zou, H. Ma, and R. Spolenak, Ultrastrong Ductile and Stable High-Entropy Alloys at Small Scales, Nat. Commun., 2015, 6, p 7748ADSCrossRefGoogle Scholar
  5. 5.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1-93CrossRefGoogle Scholar
  6. 6.
    Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, and R.O. Ritchie, Nanoscale Origins of the Damage Tolerance of the High-Entropy Alloy CrMnFeCoNi, Nat. Commun., 2015, 6, p 10143ADSCrossRefGoogle Scholar
  7. 7.
    O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, Accelerated Exploration of Multi-Principal Element Alloys with Solid Solution Phases, Nat. Commun., 2015, 6, p 6529ADSCrossRefGoogle Scholar
  8. 8.
    M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks, Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys, Phys. Rev. X, 2015, 5, p 011041Google Scholar
  9. 9.
    F. Kormann, A.V. Ruban, and M.H.F. Sluiter, Long-Ranged Interactions in BCC NbMoTaW High-Entropy Alloys, Mater. Res. Lett., 2017, 5, p 35-40CrossRefGoogle Scholar
  10. 10.
    S. Maiti and W. Steurer, Structural-Disorder and Its Effect on Mechanical Properties in Single-Phase TaNbHfZr High-Entropy Alloy, Acta Mater., 2016, 106, p 87-97CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Beland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, and W.J. Weber, Influence of Chemical Disorder on Energy Dissipation and Defect Evolution in Concentrated Solid Solution Alloys, Nat. Commun., 2015, 6, p 8736ADSCrossRefGoogle Scholar
  12. 12.
    W.Y. Wang, S.L. Shang, Y. Wang, F. Han, K.A. Darling, Y. Wu, X. Xie, O.N. Senkov, J.S. Li, X.D. Hui, K.A. Dahmen, P.K. Liaw, L.J. Kecskes, and Z.-K. Liu, Atomic and Electronic Basis for the Serrations of Refractory High Entropy Alloys. NPJ Comput. Mater., 2017 (in press)Google Scholar
  13. 13.
    C. Pang, Q. Wang, R. Zhang, Q. Li, X. Dai, C. Dong, and P.K. Liaw, β Zr-Nb-Ti-Mo-Sn Alloys with Low Young’s Modulus and Low Magnetic Susceptibility Optimized Via a Cluster-Plus-Glue-Atom Model, Mater. Sci. Eng., A, 2015, 626, p 369-374CrossRefGoogle Scholar
  14. 14.
    E. Ma, Tuning Order in Disorder, Nat. Mater., 2015, 14, p 547-552ADSCrossRefGoogle Scholar
  15. 15.
    Y. Wu, H. Wang, Y. Cheng, X. Liu, X. Hui, T. Nieh, Y. Wang, and Z. Lu, Inherent Structure Length in Metallic Glasses: Simplicity Behind Complexity, Sci. Rep., 2015, 5, p 12137ADSCrossRefGoogle Scholar
  16. 16.
    Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, and R.O. Ritchie, Dislocation Mechanisms and 3D Twin Architectures Generate Exceptional Strength-Ductility-Toughness Combination in CrCoNi Medium-Entropy Alloy, Nat. Commun., 2017, 8, p 14390ADSCrossRefGoogle Scholar
  17. 17.
    Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, and X.D. Hui, Phase Composition and Solid Solution Strengthening Effect in TiZrNbMoV High-Entropy Alloys, Mater. Des., 2015, 83, p 651-660CrossRefGoogle Scholar
  18. 18.
    T. Egami, Atomic Level Stresses, Prog. Mater Sci., 2011, 56, p 637-653CrossRefGoogle Scholar
  19. 19.
    P. Murali, T.F. Guo, Y.W. Zhang, R. Narasimhan, Y. Li, and H.J. Gao, Atomic Scale Fluctuations Govern Brittle Fracture and Cavitation Behavior in Metallic Glasses, Phys. Rev. Lett., 2011, 107, p 215501ADSCrossRefGoogle Scholar
  20. 20.
    D. Ma, A.D. Stoica, and X.L. Wang, Power-Law Scaling and Fractal Nature of Medium-Range Order in Metallic Glasses, Nat. Mater., 2009, 8, p 30-34ADSCrossRefGoogle Scholar
  21. 21.
    C. Jiang and B.P. Uberuaga, Efficient Ab Initio Modeling of Random Multicomponent Alloys, Phys. Rev. Lett., 2016, 116, p 105501ADSCrossRefGoogle Scholar
  22. 22.
    A. Zunger, S.H. Wei, L.G. Ferreira, and J.E. Bernard, Special Quasirandom Structures, Phys. Rev. Lett., 1990, 65, p 353-356ADSCrossRefGoogle Scholar
  23. 23.
    A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, and Z.K. Liu, Efficient Stochastic Generation of Special Quasirandom Structures, CALPHAD, 2013, 42, p 13-18CrossRefGoogle Scholar
  24. 24.
    Y. Qiu, Y.J. Hu, A. Taylor, M.J. Styles, R.K.W. Marceau, A.V. Ceguerra, M.A. Gibson, Z.K. Liu, H.L. Fraser, and N. Birbilis, A Lightweight Single-Phase AlTiVCr Compositionally Complex Alloy, Acta Mater., 2017, 123, p 115-124CrossRefGoogle Scholar
  25. 25.
    R.S. Berry and B.M. Smirnov, Configurational Transitions in Processes Involving Metal Clusters, Phys. Rep., 2013, 527, p 205-250ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Shang, Y. Wang, W.Y. Wang, H. Fang, and Z.-K. Liu, Low Energy Structures of Lithium-Ion Battery Materials Li(MnxNixCo1−2x)O2 Revealed by First-Principles Calculations, Appl. Phys. Lett., 2013, 103, p 053903-053905ADSCrossRefGoogle Scholar
  27. 27.
    W.Y. Wang, S.L. Shang, H.Z. Fang, H. Zhang, Y. Wang, S. Mathaudhu, X. Hui, and Z.K. Liu, Effect of Composition on Atomic Structure, Diffusivity and Viscosity of Liquid Al-Zr Alloys, Metall. Mater. Trans. A, 2012, 43, p 3471-3480CrossRefGoogle Scholar
  28. 28.
    H.Z. Fang, W.Y. Wang, P.D. Jablonski, and Z.K. Liu, Effects of Reactive Elements on the Structure and Diffusivity of Liquid Chromia: An Ab Initio Molecular Dynamics Study, Phys. Rev. B, 2012, 85, p 014207ADSCrossRefGoogle Scholar
  29. 29.
    W.Y. Wang, H.Z. Fang, S.L. Shang, H. Zhang, Y. Wang, X. Hui, S. Mathaudhu, and Z.K. Liu, Atomic Structure and Diffusivity in Liquid Al80Ni20 by Ab Initio Molecular Dynamics Simulations, Phys. B, 2011, 406, p 3089-3097ADSCrossRefGoogle Scholar
  30. 30.
    G. Kresse and J. Furthmuller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, p 11169-11186ADSCrossRefGoogle Scholar
  31. 31.
    G. Kresse and J. Furthmuller, Efficiency of Ab Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6, p 15-50CrossRefGoogle Scholar
  32. 32.
    G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59, p 1758-1775ADSCrossRefGoogle Scholar
  33. 33.
    Y. Wang and J.P. Perdew, Correlation Hole of the Spin-Polarized Electron Gas, with Exact Small-Wave-Vector and High-Density Scaling, Phys. Rev. B, 1991, 44, p 13298-13307ADSCrossRefGoogle Scholar
  34. 34.
    M. Methfessel and A.T. Paxton, High-Precision Sampling for Brillouin-Zone Integration in Metals, Phys. Rev. B, 1989, 40, p 3616-3621ADSCrossRefGoogle Scholar
  35. 35.
    P.E. Blochl, O. Jepsen, and O.K. Andersen, Improved Tetrahedron Method for Brillouin-Zone Integrations, Phys. Rev. B, 1994, 49, p 16223-16233ADSCrossRefGoogle Scholar
  36. 36.
    P.N.H. Nakashima, A.E. Smith, J. Etheridge, and B.C. Muddle, The Bonding Electron Density in Aluminum, Science, 2011, 331, p 1583-1586ADSCrossRefGoogle Scholar
  37. 37.
    W.Y. Wang, K.A. Darling, Y. Wang, S.-L. Shang, L.J. Kecskes, X.D. Hui, and Z.-K. Liu, Power Law Scaled Hardness of Mn Strengthened Nanocrystalline Al-Mn Non-equilibrium Solid Solutions, Scr. Mater., 2016, 120, p 31-36CrossRefGoogle Scholar
  38. 38.
    W.Y. Wang, J.J. Han, H.Z. Fang, J. Wang, Y.F. Liang, S.L. Shang, Y. Wang, X.J. Liu, L.J. Kecskes, S.N. Mathaudhu, X. Hui, and Z.K. Liu, Anomalous Structural Dynamics in Liquid Al80Cu20: An Ab Initio Molecular Dynamics Study, Acta Mater., 2015, 97, p 75-85CrossRefGoogle Scholar
  39. 39.
    W.Y. Wang, Y. Wang, S.L. Shang, K.A. Darling, H. Kim, B. Tang, H.C. Kou, S.N. Mathaudhu, X.D. Hui, J.S. Li, L.J. Kecskes, and Z.-K. Liu, Strengthening Mg by Self-Dispersed Nano-lamellar Faults, Mater. Res. Lett., 2017, doi: 10.1080/21663831.2017.1308973 Google Scholar
  40. 40.
    K. Momma and F. Izumi, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data, J. Appl. Crystallogr., 2011, 44, p 1272-1276CrossRefGoogle Scholar
  41. 41.
    Z.W. Wu, M.Z. Li, W.H. Wang, and K.X. Liu, Hidden Topological Order and Its Correlation with Glass-Forming Ability in Metallic Glasses, Nat. Commun., 2015, 6, p 6035ADSCrossRefGoogle Scholar
  42. 42.
    X.J. Liu, Y. Xu, X. Hui, Z.P. Lu, F. Li, G.L. Chen, J. Lu, and C.T. Liu, Metallic Liquids and Glasses: Atomic Order and Global Packing, Phys. Rev. Lett., 2010, 105, p 4Google Scholar
  43. 43.
    S.L. Shang, A. Saengdeejing, Z.G. Mei, D.E. Kim, H. Zhang, S. Ganeshan, Y. Wang, and Z.K. Liu, First-Principles Calculations of Pure Elements: Equations of State and Elastic Stiffness Constants, Comput. Mater. Sci., 2010, 48, p 813-826CrossRefGoogle Scholar
  44. 44.
    Z.-K. Liu, First-Principles Calculations and CALPHAD Modeling of Thermodynamics, J. Phase Equilib. Diffus., 2009, 30, p 517-534CrossRefGoogle Scholar
  45. 45.
    O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758-1765CrossRefGoogle Scholar
  46. 46.
    S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci., 2011, 21, p 433-446CrossRefGoogle Scholar
  47. 47.
    L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Deviation from High-Entropy Configurations in the Atomic Distributions of a Multi-Principal-Element Alloy, Nat. Commun., 2015, 6, p 5964ADSCrossRefGoogle Scholar
  48. 48.
    M.G. Poletti and L. Battezzati, Electronic and Thermodynamic Criteria for the Occurrence of High Entropy Alloys in Metallic Systems, Acta Mater., 2014, 75, p 297-306CrossRefGoogle Scholar
  49. 49.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10, p 534-538CrossRefGoogle Scholar
  50. 50.
    R. Feng, M. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. Hawk, Y. Zhang, and P. Liaw, Design of Light-Weight High-Entropy Alloys, Entropy, 2016, 18, p 333ADSCrossRefGoogle Scholar
  51. 51.
    S. Chen, L. Yu, J. Ren, X. Xie, X. Li, Y. Xu, G. Zhao, P. Li, F. Yang, Y. Ren, and P.K. Liaw, Self-Similar Random Process and Chaotic Behavior in Serrated Flow of High Entropy Alloys, Sci. Rep., 2016, 6, p 29798ADSCrossRefGoogle Scholar
  52. 52.
    J. Antonaglia, X. Xie, Z. Tang, C.W. Tsai, J.W. Qiao, Y. Zhang, M.O. Laktionova, E.D. Tabachnikova, J.W. Yeh, O.N. Senkov, M.C. Gao, J.T. Uhl, P.K. Liaw, and K.A. Dahmen, Temperature Effects on Deformation and Serration Behavior of High-Entropy Alloys (HEAs), JOM, 2014, 66, p 2002-2008CrossRefGoogle Scholar
  53. 53.
    R. Carroll, C. Lee, C.-W. Tsai, J.-W. Yeh, J. Antonaglia, B.A.W. Brinkman, M. LeBlanc, X. Xie, S. Chen, P.K. Liaw, and K.A. Dahmen, Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys, Sci. Rep., 2015, 5, p 16997ADSCrossRefGoogle Scholar
  54. 54.
    M.C. Gao, J.-W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer, Cham, 2016CrossRefGoogle Scholar
  55. 55.
    S. Chen, X. Xie, B. Chen, J. Qiao, Y. Zhang, Y. Ren, K.A. Dahmen, and P.K. Liaw, Effects of Temperature on Serrated Flows of Al0.5CoCrCuFeNi High-Entropy Alloy, JOM, 2015, 67, p 2314-2320CrossRefGoogle Scholar
  56. 56.
    S. Chen, X. Yang, K. Dahmen, P. Liaw, and Y. Zhang, Microstructures and Crackling Noise of AlxNbTiMoV High Entropy Alloys, Entropy, 2014, 16, p 870-884ADSCrossRefGoogle Scholar
  57. 57.
    M. Widom, W.P. Huhn, S. Maiti, and W. Steurer, Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy, Metall. Mater. Trans. A, 2013, 45A, p 196-200ADSGoogle Scholar
  58. 58.
    M. Widom, Prediction of Structure and Phase Transformations, in eds. by M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang (Springer, Cham)Google Scholar
  59. 59.
    Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen, and Z.K. Liu, Ab Initio Lattice Stability in Comparison with CALPHAD Lattice Stability, CALPHAD, 2004, 28, p 79-90CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • William Yi Wang
    • 1
    • 2
    Email author
  • Jun Wang
    • 1
  • Deye Lin
    • 3
  • Chengxiong Zou
    • 1
  • Yidong Wu
    • 4
  • Yongjie Hu
    • 2
  • Shun-Li Shang
    • 2
  • Kristopher A. Darling
    • 5
  • Yiguang Wang
    • 1
  • Xidong Hui
    • 4
  • Jinshan Li
    • 1
  • Laszlo J. Kecskes
    • 5
  • Peter K. Liaw
    • 6
  • Zi-Kui Liu
    • 2
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.CAEP Software Center for High Performance Numerical SimulationInstitute of Applied Physics and Computational MathematicsBeijingChina
  4. 4.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  5. 5.U.S. Army Research Laboratory, Weapons and Materials Research DirectorateRDRL-WMM-BAberdeen Proving GroundUSA
  6. 6.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA

Personalised recommendations