Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 38, Issue 3, pp 332–342 | Cite as

Multicomponent Phase Diagram of Lean Duplex Stainless Steel UNS S82441 and Its Application to Evaluate the Microstructure in the Heat Affected Zone

  • Evandro Armini de Pauli
  • Claudio Geraldo Schön
  • Sérgio Duarte BrandiEmail author
Article

Abstract

Duplex stainless steels are Fe-Cr-Ni-Mo-N alloys with nitrogen replacing some nickel to improve its properties. These steels have a balanced microstructure, which means that ferrite (α) and austenite (γ) are in equal proportions of approximately 50% by volume. These alloys have a tendency to form intermetallic precipitates such as chromium nitrides and sigma phase (σ), depending on their chemical composition and welding thermal history. Precipitation of these intermetallic phases can impair mechanical and corrosion properties. In addition, material processes such as welding and heat treatment can change the balanced microstructure. The objective of this work was to compare phases formed during heat treatment and welding of duplex stainless steel UNS S82441 with the equilibrium phases predicted by Thermo-calc® software. In general, the results showed good agreement between predicted and measured phases, as well as, agreement between the measured volume fraction of austenite in the heat-affected zone and austenite predicted by Thermo-calc® software.

Keywords

intermetallic phases lean duplex stainless steel Thermo-calc® UNS S82441 welding 

Notes

Acknowledgments

The authors appreciate the donation of Outokumpu duplex UNS S82441 steel, and Voith in providing consumables and to Prof. Dr. Flávio Beneducci for help with phase diagrams discussion.

References

  1. 1.
    W. Wessling and H.E. Bock, Properties and Applications of a Recently Developed Ferrite-Austenitic Steel Containing 0,02% C, 22% Cr, 3% Mo and 0,12% N in Comparison with Molybdenum-Alloyed Austenitic Steels, Stainless Steel 77, Climax Mol. Co., England, n. Barr, R.Q., Sept. 26-27 1977, p 217-226Google Scholar
  2. 2.
    N. Sridhar, J. Kolts, and L.H. Flasche, A Duplex Stainless Steel for Chloride Environments, J. Met., 1985, 37(3), p 31-35Google Scholar
  3. 3.
    T. Ogawa and T. Kosheki, Weldability of duplex stainless steel, Doc.IIW, 1986, v. IX, p 1416-1486Google Scholar
  4. 4.
    T.G. Gooch, Welding and Weldability of Stainless Steel, Stainless Steel 84, Chalmers University of Technology, Gotenborg, Sweden, Sept. 3-4, 1984, p 343-352Google Scholar
  5. 5.
    S.D. Brandi, Estudo da soldabilidade do Aço Inoxidável Duplex DIN W.Nr.1.4462 (UNS S31803) (Study of the weldability of Duplex Stainless Steel DIN W.Nr.1.4462 (UNS S31803)), PhD thesis, Departamento de Engenharia Metalúrgica, Escola Politécnica, Universidade de São Paulo, São Paulo, 1992, p. 265 (in Portuguese)Google Scholar
  6. 6.
    J. Street, Welding Duplex Stainless Steel for Arduous Service, Met. Constr., 1986, 18(9), p 565-569Google Scholar
  7. 7.
    S.D. Brandi, Some Aspects of Weldability and Jointability of Duplex Stainless Steels, Mater. Sci. Forum, 2003, 426(432), p 4063-4068CrossRefGoogle Scholar
  8. 8.
    S.D. Brandi, Weldability of Duplex Stainless Steels. In: AWS. (Org.), AWS Welding Handbook, 9a. ed. Miami, USA: American Welding Society, 2011, v. 4, p 351-368Google Scholar
  9. 9.
    A.J. Griffiths and A.T., Performance of Duplex Stainless Steels in Oilfield Environments. In: L.A.J.L. Sarton, H.B. Zeedijk (Eds.), Proceedings, 1, Netherlands Society for Materials Science, Zwijndrecht, 1997, p. 1/79-1/82Google Scholar
  10. 10.
    ASM, Proprieties and selection: Irons, Steels and High performance alloys, ASM International Metals Handbook, US, 1990, v. 1Google Scholar
  11. 11.
    H.D.T. Solomon, A tale of two phases, Conference Duplex Stainless Steel’s 82-Proceedings, Estados Unidos, St. Louis, 1982, p 693-756Google Scholar
  12. 12.
    R.S.C. Paredes et al, Avaliação da soldabilidade de aços inoxidáveis especiais a ser utilizados na industria do petróleo (Evaluation of the weldability of special stainless steels to be used in the oil industry), 2º Congresso Brasileiro de P&D em Petróleo & Gás, 2003 (in Portuguese)Google Scholar
  13. 13.
    S.D. Brandi, L.M.Y. Silveira, and D.L.B. Vasconcelos, Aplicação da norma ASTM A923-Prática A para identificação de fases intermetálicas em junta soldada de aço inoxidável superduplex UNS 32750 (Application of ASTM A923-Practice A for identification of intermetallic phases in welded joints of super duplex stainless steel UNS 32750), Rem. Revista Escola de Minas, 2010, 63(1), p 153-158 (in Portuguese)CrossRefGoogle Scholar
  14. 14.
    A.F. Padilha, R.L. Plaut, and S. Degallaix-Moreuli, Phase Transformation and Microstructure, Duplex Stainless Steels, Vol 1, ISTE Ltd, London, 2009, p 115-139Google Scholar
  15. 15.
    N. Suutala, T. Takalo, and T. Moisio, The Relationship Between Solidification and Microstructure in Austenitic and Austenitic-Ferritic Stainless Steel Welds, Met. Trans., 1979, 10A(4), p 512-514CrossRefGoogle Scholar
  16. 16.
    T. Takalo, N. Suutala, and T. Moisio, Austenitic Solidification Mode in Austenitic Stainless Mode in Austenitic Stainless Steel Welds, Met. Trans., 1979, 10A(8), p 1173-1181CrossRefGoogle Scholar
  17. 17.
    N. Suutala, T. Takalo, and T. Moisio, Ferritic-Austenitic Solidification Mode in Austenitic Stainless Steel Welds, Met. Trans., 1983, 14A(2), p 191-197CrossRefGoogle Scholar
  18. 18.
    A.J. Ramirez, S.D. Brandi, and J.C. Lippold, Relationship Between Chromium Nitride and Secondary Austenite Precipitation in Duplex Stainless Steels, Metall. Mater. Trans. A, 2003, 34A(8), p 1575-1597ADSCrossRefGoogle Scholar
  19. 19.
    A.J. Ramirez, J.C. Lippold, and S.D. Brandi, Secondary Austenite and Chromium Nitride Precipitation in Simulated Heat Affected Zones of Duplex Stainless Steels, Sci. Technol. Weld. Join., 2004, 9(4), p 1-13CrossRefGoogle Scholar
  20. 20.
    E.A. Pauli and S.D. Brandi, Influência da Energia de Soldagem na Microestrutura e na Microdureza de uma Junta Soldada (Influence of welding heat input on the microstructure and microhardness of a welded joint), XLI Consolda - Congresso Nacional de Soldagem, Salvador, October 2015 (in Portuguese)Google Scholar
  21. 21.
    D.N. Noble, T.G. Gooch, Factors controlling the ferrite/austenite balance in arc welded 22Cr/5Ni/2,5Mo/N duplex stainless steel, Weld. Inst. Res. Report 321/1986, Nov, 1986Google Scholar
  22. 22.
    R. Fedele, S.D. Brandi and S.G. Lebrão, Soldagem multipasse do aço inoxidável duplex UNS S31803 por eletrodo revestido (Welding multipass duplex stainless steel UNS S31803 by coated electrode), Soldagem & Inspeção – Ano 6. Nº 1 – Supplement Technical BR, Belo Horizonte, 1999 (in Portuguese)Google Scholar
  23. 23.
    M. Senatore, L. Finzetto, E. Perea, Estudo comparativo entre os aços inoxidáveis duplex e os inoxidáveis AISI 304l/316L (A comparative study between duplex stainless steels and AISI 304L / 316L stainless steels), VIII Seminário Brasileiro do Aço Inoxidável, 2006 (in Portuguese)Google Scholar
  24. 24.
    S.D. Brandi and C.J. L., Considerações sobre Metalurgia soldagem de aços inoxidáveis duplex e superduplex (Considerations on Welding Metallurgy of Stainless Duplex and Super Duplex Stainless Steels), Metalurgia & Materiais, 1997, vol 53 (453), p 141–146 (in Portuguese)Google Scholar
  25. 25.
    J.O. Nilsson, The physical metallurgy of duplex stainless steel, Conference duplex stainless steel 97, Netherlands, 1997, p 73-82Google Scholar
  26. 26.
    C. Shek, K.W. Wong, and J.K.L. Lai, Review of Temperature Indicators and the Use of Duplex Stainless Steels for Life Assessment, Mater. Sci. Eng., 1996, R19, p 153-200Google Scholar
  27. 27.
    J.O. Nilsson, Superduplex Stainless Steels, Mater. Sci. Technol., 1992, 8, p 685-700CrossRefGoogle Scholar
  28. 28.
    M. Pohl, O. Storz, and T. Glogowski, Effect of Intermetallic Precipitations on the Properties of Duplex Stainless Steel, Mater. Charact., 2007, 58, p 65-71CrossRefGoogle Scholar
  29. 29.
    H.D. Solomon, T.M. Devine, and R.A. Lula, Duplex Stainless Steel, American Society for Metals, Metals Park, 1983, p 553-572Google Scholar
  30. 30.
    Y.S. Ahn and J.P. Kang, Effect of Aging Treatments on Microstructure and Impact Properties of Tungsten Substituted 2205 Duplex Stainless Steel, Mater. Sci. Technol., 2000, 16(4), p 382-387CrossRefGoogle Scholar
  31. 31.
    A.J. Sedriks, Corrosion of Stainless Steel, Cap1, Wiley, New York, 1996, p 13-25Google Scholar
  32. 32.
    R. Gunn, Duple Stainless Steels—Microstructure, Properties and Applications, Abington Publishing, Cambridge, 2003Google Scholar
  33. 33.
    J.W.A. Menezes et al, Efeito da energia de soldagem sobre a fração volumétrica da fase ferrítica no aço inoxidável duplex UNS S 31803 (Effect of the welding heat input on the volume fraction of the ferrite phase in stainless steel duplex UNS S 31803), 3° Congresso Brasileiro de P&D em Petróleo e Gás, Salvador, October 2005 (in Portuguese)Google Scholar
  34. 34.
    B.D. Cullity, X-ray Diffraction, Addison-Wesley Publ. Co., Boston, 1967, p 324-344Google Scholar
  35. 35.
    M.F. Ashby and K.E. Easterling, A First Report on Diagrams for Grain Growth in Welds, Acta Metall., 1982, 30, p 1969-1978CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Evandro Armini de Pauli
    • 1
  • Claudio Geraldo Schön
    • 1
  • Sérgio Duarte Brandi
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringEscola Politecnica da USPSão PauloBrazil

Personalised recommendations