Journal of Phase Equilibria and Diffusion

, Volume 38, Issue 3, pp 231–237 | Cite as

Influence of the Exchange-Correlation Functional on the Energy of Formation and Magnetic Behavior of Binary D03 Intermetallic Compounds FeM3 (M = Ti, Zr, Hf)

  • A. V. Gil RebazaEmail author
  • Victoria I. Fernández
  • Luiz T. F. Eleno
  • L. Errico
  • Cláudio G. Schön
  • Helena M. Petrilli


In recent years, ab-initio calculations based on the density functional theory became a commonly used tool in supporting, improving or even refuting experimental results in different research fields. In this work we discuss some accuracy aspects inherent to ab-initio electronic structure calculations regarding the understanding of different structural, electronic and magnetic physical properties. In particular, we discuss the dependence of the magnetic ground-state and the formation energy with the exchange-correlation functional for the binary intermetallic compounds FeTi3, FeZr3 and FeHf3 with D03 crystal structure. All exchange-correlation schemes used were based on the generalized gradient approximation. It is the aim of the present paper to call the attention of the community to some fundamental aspects of the calculations that can influence the final results and the conclusions derives from it.


ab-initio calculations formation energy magnetism 



This work was performed and supported by the MINCyT-FWO program FW/14/03-VS.020.15 N, the MINCyT-DAAD grant DA13/02, UNNOBA, UNLP and Consejo Nacional de Investigaciones Cientıfícas y Técnicas (CONICETunder PIP60002. Calculations were carried out using the computational facilities at IFLP and Departamento de Física (UNLP), and the Huge Cluster, University of Aarhus, Denmark. L. E dedicates this work to the memory of Axel Svane, a colleague, friend and long-time researcher in this field who recently passed away.


  1. 1.
    P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, p B864-B871ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p A1133-A1138ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals, Crit. Rev. Solid State Mater. Sci., 2014, 39, p 1-24ADSCrossRefGoogle Scholar
  4. 4.
    A.E. Mattsson, In Pursuit of the “Divine” Functional, Science, 2002, 298, p 759-760CrossRefGoogle Scholar
  5. 5.
    F. Tran, J. Stelzl, and P. Blaha, Rungs 1 to 4 of DFT Jacob’s ladder: Extensive Test on the Lattice Constant, Bulk Modulus, and Cohesive Energy of Solids, J. Chem. Phys., 2016, 144, p 204120-1-204120-21ADSGoogle Scholar
  6. 6.
    R. Car, Density Functional Theory: Fixing Jacob’s Ladder, Nat. Chem., 2016, 8, p 820-821CrossRefGoogle Scholar
  7. 7.
    C.M. Ceperley and D.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 1980, 45, p 566-569ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Perdew and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B, 1992, 45, p 13244-13249ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865-3868ADSCrossRefGoogle Scholar
  10. 10.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett., 2008, 100, p 136406-136409ADSCrossRefGoogle Scholar
  11. 11.
    Z. Wu and R.E. Cohen, More Accurate Generalized Gradient Approximation for Solids, Phys. Rev. B., 2006, 73, p 235116-1-235116-6ADSGoogle Scholar
  12. 12.
    K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.N.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iuşan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G. Zhang, and S. Cottenier, Reproducibility in Density Functional Theory Calculations of Solids, Science, 2016, 351, p aad3000-1-aad3000-7CrossRefGoogle Scholar
  13. 13.
    K. Lejaeghere, J. Jaeken, V. Van Speybroeck, and S. Cottenier, Ab Initio Based Thermal Property Predictions at a Low Cost: An Error Analysis, Phys. Rev. B, 2014, 89, p 014304-1-014304-14ADSCrossRefGoogle Scholar
  14. 14.
    H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge, 2007CrossRefzbMATHGoogle Scholar
  15. 15.
    E. Sjöostedt, L. Nordström, and D.J. Singh, An Alternative Way of Linearizing the Augmented Plane-Wave Method, Solid State Commun., 2000, 114, p 15-20ADSCrossRefGoogle Scholar
  16. 16.
    G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Efficient Linearization of the Augmented Plane-Wave Method, Phys. Rev. B, 2001, 64, p 195134-1ADSGoogle Scholar
  17. 17.
    S. Cottenier, Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction (KU Leuven, Belgium, 2002).
  18. 18.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, K. Schwarz, Ed., Technical Universität Wien, Austria, 1999, Google Scholar
  19. 19.
    F. Tran, R. Laskowski, P. Blaha, and K. Schwarz, Performance on Molecules, Surfaces, and Solids of the Wu-Cohen GGA Exchange-Correlation Energy Functional, Phys. Rev. B, 2007, 75, p 115131-1-115131-14ADSCrossRefGoogle Scholar
  20. 20.
    F. Birch, Finite Elastic Strain of Cubic Crystals, Phys. Rev., 1947, 71, p 809-824ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    R. Kohlhaas, P. Donner, and N. Schmitz-Pranghe, The Temperature-Dependence of the Lattice Parameters of Iron, Cobalt, and Nickel in the High Temperature Range, Z. Angew. Phys., 1967, 23, p 245-249Google Scholar
  22. 22.
    R.R. Pawar and V.T. Deshpande, The Anisotropy of the Thermal Expansion of α-Titanium, Acta Crystallogr., 1968, 24A, p 316-317ADSCrossRefGoogle Scholar
  23. 23.
    B. Olinger and J.C. Jamieson, Zirconium: Phases and Compressibility to 120 Kilobars, High Temp. High Press., 1973, 5, p 123-131Google Scholar
  24. 24.
    R. Russell, On the Zr-Hf System, J. Appl. Phys., 1953, 24, p 232-233ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • A. V. Gil Rebaza
    • 1
    • 2
    Email author
  • Victoria I. Fernández
    • 1
  • Luiz T. F. Eleno
    • 3
  • L. Errico
    • 1
    • 4
  • Cláudio G. Schön
    • 5
  • Helena M. Petrilli
    • 6
  1. 1.Departamento de Física, Instituto de Física La Plata IFLP-CONICETUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Grupo de Estudio de Materiales y Dispositivos Electrónicos GEMyDE, Facultad de IngenieriaUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Departamento de Engenharia de Materiais, Escola de Engenharia de LorenaUniversidade de São Paulo (Demar/EEL/USP)São PauloBrazil
  4. 4.Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA)PergaminoArgentina
  5. 5.Computational Materials Science Laboratory, Department of Metallurgical and Materials EngineeringEscola Politécnica da Universidade de São PauloSão PauloBrazil
  6. 6.Instituto de FísicaUniversidad de São PauloSão PauloBrazil

Personalised recommendations