Journal of Phase Equilibria and Diffusion

, Volume 38, Issue 3, pp 195–200 | Cite as

Experimental Investigation of the Epsilon Phase in Pb–Bi System

  • V. B. Martins
  • T. P. Nagasima
  • L. T. F. Eleno
  • C. G. SchönEmail author


The Pb–Bi (Lead–Bismuth) binary system has gained some prominence in recent years due to the possible use of eutectic alloys as primary-circuit coolant in generation IV nuclear reactors. Apart from the terminal solid solutions A1-Pb and A7-Bi, the system presents also one intermetallic phase with the hexagonal close-packed structure (A3), usually denoted ε phase. Due to the low temperatures involved in this system, attainment of equilibrium is difficult, and in addition, the proximity of x-ray scattering factors for both elements raises questions about a possible polymorphic transition. In the present work, three samples with compositions Pb–29 wt.%Bi, Pb–31 wt.%Bi and Pb–33 wt.%Bi were prepared and characterized by x-ray diffraction. The lattice parameters of ε are consistent with those reported in the literature, and their dependence on Bi content was determined as well. Only the hexagonal phase was identified in the 29 wt.%Bi sample, although the currently assessed Pb–Bi phase diagram predicts the presence of the Pb-rich A1 terminal solid solution in this composition. A 2-year annealing at room temperature was performed and the XRD characterization results for these samples are compared with the original data.


Alloys Binary system Experimental crystal structure Intermetallics Lattice parameter 



The authors would like to thank Professors: Jorge Alberto Soares Tenório (Department of Chemical Engineering, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil) and Nelson Batista de Lima (Instituto de Pesquisas Energéticas e Nucleares, CNEN-SP, São Paulo, Brazil), by the using of the diffraction equipment and for assistance in the analysis. The present work was supported by the Brazilian National Research, Innovation and Development Council (CNPq, Brasília, Brazil) under Proj. 312424/2013-2, by the CAPES Foundation of the Ministry of Education (Brasília, Brazil) under Grants 1564534 and 1555700, and by the Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo, Brazil) under Proj. 2012/04023-2. This support is gratefully acknowledged.


  1. 1.
    R. Maeda, A. Sheldrick, Japan Aims to Abandon Nuclear Power by 2030, Reuters World News, Sept 14, 2012. Last accessed 24 Oct 2016
  2. 2.
    E.P. Loewen and A.T. Tokuhiro, Status of Research and Development of the Lead-alloy-cooled Fast Reactor, J. Nucl. Sci. Tech., 2003, 40(8), p 614-627CrossRefGoogle Scholar
  3. 3.
    P. Baeten, M. Schyns, R. Fernandez, D. De Bruyn, and G. Van den Eynde, MYHRRA: A Multpurpose Nuclear Research Facility, EPJ Web Conf., 2014, 79, p 03001. doi: 10.1051/epjconf/20147903001 CrossRefGoogle Scholar
  4. 4.
    Nuclear Energy Agency, Handbook on Lead–Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies, 2015 Edition. Organization for Economic Co-operation and Development, Report NEA No. 7268Google Scholar
  5. 5.
    H.S. Strickler and H. Seltz, A Thermodynamic Study of the Lead–Bismuth System, J. Am. Chem. Soc., 1936, 58(11), p 2084-2093CrossRefGoogle Scholar
  6. 6.
    G.O. Hiers, Metals Handbook, ASM, Cleveland, 1948Google Scholar
  7. 7.
    M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd ed., New York, McGraw Hill, 1958Google Scholar
  8. 8.
    P. Roy, R.L. Orr, and R. Hultgren, The Thermodynamics of Bismuth–Lead Alloys, J. Phys. Chem., 1960, 64, p 1034-1037CrossRefGoogle Scholar
  9. 9.
    B. Predel and W. Schwermann, Analyse der thermodynamischen Eigenschaften fester Blei–Wismut–Legierungen (Analysis of the Thermodynamic Properties of Solid Lead–Bismuth-Alloys), Z. Metall., 1967, 58(8), p 553-557, in GermanGoogle Scholar
  10. 10.
    N.A. Gokcen, The Bi–Pb (Bismuth–Lead) System, J. Ph. Equilib., 1992, 13(1), p 21-32CrossRefGoogle Scholar
  11. 11.
    S.W. Yoon and H.M. Lee, A Thermodynamic Study of Phase Equilibria in the Sn–Bi–Pb Solder System, Calphad, 1998, 22(2), p 167-178CrossRefGoogle Scholar
  12. 12.
    H. Okamoto, Comments on Bi–Pb (Bismuth–Lead), J. Ph. Equilib., 1994, 15(3), p 361-362Google Scholar
  13. 13.
    H. Okamoto, Bi–Pb (Bismuth–Lead), J. Ph. Equilib. Diffus., 2012, 33(6), p 505CrossRefGoogle Scholar
  14. 14.
    D. Solomon and W.M. Jones, An X-ray Investigation of the Lead–Bismuth and the Tin–Bismuth Alloys, Philos. Mag., 1931, 11(73), p 1090-1103CrossRefGoogle Scholar
  15. 15.
    W. Meißner, H. Franz, and H. Westerhof, Messungen mit Hilfe von flüssigen Helium XIV Systematische Untersuchung einiger Legierungsreihen in Bezug auf Supraleitfähigkeit (Measurements with Assistance of Liquid Helium. XIV Systematic Investigation of Some Alloys Concerning Superconductivity), Ann. Phys., 1932, 405(8), p 479-484. doi: 10.1002/andp.19324050805, in GermanCrossRefGoogle Scholar
  16. 16.
    M. Murakami, H.-C.W. Huang, J. Angilello, and B.L. Gilbert, Thermal Stability of Pb Alloy Josephson Junction Electrode Materials. VII. Concentration Range of Single ε-phase Pb–Bi Films Used in Counter Electrodes, J. Appl. Phys., 1983, 54(2), p 738-742ADSCrossRefGoogle Scholar
  17. 17.
    S.E. Rasmussen and B. Lundtoft, Crystal Data for Pb7Bi3, a Superconducting ε-phase in the Pb–Bi System, Powder Diffr., 1987, 2(1), p 28ADSCrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • V. B. Martins
    • 1
  • T. P. Nagasima
    • 1
  • L. T. F. Eleno
    • 2
  • C. G. Schön
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringEscola Politécnica da Universidade de São PauloSão PauloBrazil
  2. 2.Department of Materials Engineering, Escola de Engenharia de LorenaUniversidade de São PauloLorenaBrazil

Personalised recommendations