Journal of Phase Equilibria and Diffusion

, Volume 37, Issue 1, pp 75–85 | Cite as

Post-solidification Effects in Directionally Grown Al-Ag\(_2\)Al-Al\(_2\)Cu Eutectics

  • I. Sargin
  • A. L. Genau
  • R. E. NapolitanoEmail author


The post-solidification reactions that take place behind the growth front in directionally solidified ternary eutectic Al-Ag-Cu alloys have a marked influence on the observed room temperature microstructure, obscuring many aspects of the solidification morphology present at the growth front. Quantifying these solid-state processes is necessary for proper interpretation of ex-situ microstructure as an indicator of growth dynamics and operating point selection. In this study, the directional growth structure and phase compositions are quantified as a function of distance from the growth front to describe microstructural changes that occur during cooling in the solid state. The solubility of Ag in the Al(fcc) phase decreases rapidly below the eutectic point, and the excess Ag is accommodated by growth of the Ag2Al(hcp) phase, mainly by motion of the Al(fcc)-Ag2Al(hcp) interface. These structural changes are quantified, and compared to the coupled morphology at the solidification front. A cellular automaton method is proposed here to mimic either the forward or reverse solid-state changes, providing a means to estimate many features of the directional growth morphology based on sampling the structure at some known distance from the front.


coupled growth solid-state effects ternary eutectics 



The research reported here was supported by the National Aeronautic and Space Administration (NASA), under Grant Number NNX10AT61G, within the Microgravity Research Program.


  1. 1.
    D.A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, P. Royer, T. Fukuda, Second Order Self-organized Pattern of Terbium-Scandium-Aluminum Garnet and Terbium-Scandium Perovskite Eutectic. J. Appl. Phys. 91(12), 9731-9736 (2002)CrossRefADSGoogle Scholar
  2. 2.
    D.A. Pawlak, Metamaterials and Photonic Crystals-Potential Applications for Self-organized Eutectic Micro-and Nanostructures. Sci. Plena 4(1), 1-12 (2008)Google Scholar
  3. 3.
    D.A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, How Far Are We from Making Metamaterials by Self-organization? The Microstructure of Highly Anisotropic Particles with an SRR-Like Geometry. Adv. Funct. Mater. 20(7), 1116-1124 (2010)CrossRefGoogle Scholar
  4. 4.
    K.A. Jackson, J.D. Hunt, Lamellar and Rod Eutectic Growth. Trans. Metall. Soc. AIME 236(8), 1129-1142 (1966)Google Scholar
  5. 5.
    D. Fisher, W. Kurz, A Theory of Branching Limited Growth of Irregular Eutectics. Acta Metall. 28(6), 777-794 (1980)CrossRefGoogle Scholar
  6. 6.
    R. Trivedi, P. Magnin, W. Kurz, Theory of Eutectic Growth Under Rapid Solidification Conditions. Acta Metall. 35(4), 971-980 (1987)CrossRefGoogle Scholar
  7. 7.
    P. Magnin, W. Kurz, An Analytical Model of Irregular Eutectic Growth and Its Application to Fe-C. Acta Metall. 35(5), 1119-1128 (1987)CrossRefGoogle Scholar
  8. 8.
    P. Magnin, R. Trivedi, Eutectic Growth: A Modification of the Jackson and Hunt Theory. Acta Metall. Mater. 39(4), 453-467 (1991)CrossRefGoogle Scholar
  9. 9.
    S. Akamatsu, G. Faivre, S. Moulinet, The Formation of Lamellar-Eutectic Grains in Thin Samples. Metall. Mater. Trans. A 32(8), 2039-2048 (2001)CrossRefGoogle Scholar
  10. 10.
    R. Kraft, Crystallography of Equilibrium Phase Interfaces in Al-CuAl\(_2\) Eutectic Alloys. Trans. Metall. Soc. AIME 224(1), 65 (1962)Google Scholar
  11. 11.
    D. Double, P. Truelove, A. Hellawell, The Development of Preferred Orientations in Eutectic Alloys. J. Cryst. Growth 2(4), 191-198 (1968)CrossRefADSGoogle Scholar
  12. 12.
    B. Caroli, C. Caroli, G. Faivre, J. Mergy, Lamellar Eutectic Growth of CBr\(_4\)-C\(_2\)Cl\(_6\): Effect of Crystal Anisotropy on Lamellar Orientations and Wavelength Dispersion. J. Cryst. Growth 118(1), 135-150 (1992)CrossRefADSGoogle Scholar
  13. 13.
    T. Himemiya, T. Umeda, Three-Phase Planar Eutectic Growth Models for a Ternary Eutectic System. Mater. Trans. JIM 40(7), 665-674 (1999)CrossRefGoogle Scholar
  14. 14.
    T. Himemiya, Three-Phase Planar Eutectic Growth Models with Rod+Hexagon or Semi-regular Structure for a Ternary Eutectic System. J. Wakkanai Hokuseigakuen Jr. Coll. 13, 77-102 (1999)Google Scholar
  15. 15.
    A. Choudhury, M. Plapp, B. Nestler, Theoretical and Numerical Study of Lamellar Eutectic Three-Phase Growth in Ternary Alloys. Phys. Rev. E 83(5), 051608 (2011)CrossRefADSGoogle Scholar
  16. 16.
    S. Rex, B. Böttger, V. Witusiewicz, U. Hecht, Transient Eutectic Solidification in In-Bi-Sn: Two-Dimensional Experiments and Numerical Simulation. Mater. Sci. Eng. A 413, 249-254 (2005)CrossRefGoogle Scholar
  17. 17.
    W. Kurz, D.J. Fisher, Fundamentals of Solidification (Trans Tech Publications Ltd., Aedermannsdorf, 1986), p. 244Google Scholar
  18. 18.
    E. Monberg, Handbook of Crystal Growth (North-Holland, Amsterdam, 1994), p. 51-97Google Scholar
  19. 19.
    R.N. Grugel, A. Anilkumar, P. Luz, L. Jeter, M.P. Volz, R. Spivey, G. Smith, P.A. Curreri (2001) NASA Marshall Spaceflight Center, Huntsville, AL
  20. 20.
    A.L. Genau, L. Ratke, IOP Conference Series-Materials Science and Engineering, vol. 27 (Iop Publishing Ltd., Bristol, 2012)Google Scholar
  21. 21.
    V. Witusiewicz, U. Hecht, S. Fries, S. Rex, The Ag-Al-Cu System: II. A Thermodynamic Evaluation of the Ternary System. J. Alloys Compd. 387(1), 217-227 (2005)CrossRefGoogle Scholar
  22. 22.
    D.J.S. Cooksey, J.A. Hellawell, The Microstructures of Ternary Eutectic Alloys in the Systems Cd-Sn-(Pb, In, Tl), Al-Cu-(Mg, Zn, Ag) and Zn-Sn-Pb. J. Inst. Met. 95, 183-187 (1967)Google Scholar
  23. 23.
    A. Dennstedt, L. Ratke, Microstructures of Directionally Solidified Al-Ag-Cu Ternary Eutectics. Trans. Indian Inst. Met. 65(6), 777-782 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Genau, L. Ratke, Morphological Characterization of the Al-Ag-Cu Ternary Eutectic. Int. J. Mater. Res. 103(4), 469-475 (2012)CrossRefGoogle Scholar
  25. 25.
    J. De Wilde, E. Nagels, F. Lemoisson, L. Froyen, Unconstrained Growth Along a Ternary Eutectic Solidification Path in Al-Cu-Ag: Preparation of a MAXUS Sounding Rocket Experiment. Mater. Sci. Eng. A 413, 514-520 (2005)CrossRefGoogle Scholar
  26. 26.
    M.A. Ruggiero, J.W. Rutter, Origin of Microstructure in 350 K Eutectic of Bi-In-Sn Ternary System. Mater. Sci. Technol. 13(1), 5-11 (1997)CrossRefGoogle Scholar
  27. 27.
    V. Datye, J. Langer, Stability of Thin Lamellar Eutectic Growth. Phys. Rev. B 24(8), 4155 (1981)CrossRefADSGoogle Scholar
  28. 28.
    M. Plapp, A. Karma, Eutectic Colony Formation: A Stability Analysis. Phys. Rev. E 60(6), 6865 (1999)CrossRefADSGoogle Scholar
  29. 29.
    Y.-J. Chen, S. Davis, Instability of Triple Junctions in Lamellar Eutectic Growth. Acta Mater. 49(8), 1363-1372 (2001)CrossRefGoogle Scholar
  30. 30.
    S. Akamatsu, M. Plapp, G. Faivre, A. Karma, Pattern Stability and Trijunction Motion in Eutectic Solidification. Phys. Rev. E 66(3), 030501 (2002)CrossRefADSGoogle Scholar
  31. 31.
    A. Karma, M. Plapp, New Insights into the Morphological Stability of Eutectic and Peritectic Coupled Growth. JOM 56(4), 28-32 (2004)CrossRefGoogle Scholar
  32. 32.
    S. Akamatsu, G. Faivre, M. Plapp, A. Karma, Overstability of Lamellar Eutectic Growth Below the Minimum-Undercooling Spacing. Metall. Mater. Trans. A 35(6), 1815-1828 (2004)CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Division of Materials Sciences and EngineeringAmes Laboratory, U.S. Department of EnergyAmesUSA

Personalised recommendations