Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 37, Issue 2, pp 119–126 | Cite as

Quaternary Al-Cu-Mg-Si Q Phase: Sample Preparation, Heat Capacity Measurement and First-Principles Calculations

  • Andrea Löffler
  • Ali Zendegani
  • Joachim Gröbner
  • Milan Hampl
  • Rainer Schmid-Fetzer
  • Hannes Engelhardt
  • Markus Rettenmayr
  • Fritz Körmann
  • Tilmann HickelEmail author
  • Jörg Neugebauer
Article

Abstract

The quaternary Q phase is an important precipitate phase in the Al-Cu-Mg-Si alloy system and its accurate thermodynamic description is crucial for further tailoring this material class for light-weight structural applications. In order to achieve an improved thermochemical parameter set of this phase, we used a combination of experimental measurements and first-principles calculations, which was focussed on the heat capacity. Its accurate experimental determination required the preparation of pure samples of Q phase and sophisticated calorimetric measurements. On the theoretical side, a simultaneous treatment of lattice vibrations within the quasiharmonic approximation, electronic excitations, and configuration entropy within the compound energy formalism were required to achieve a complete description of the heat capacity. The evaluation demonstrates the high predictive power of the first-principles as well as the Calphad modeling.

Keywords

ab initio methods CALPHAD approach heat capacity quaternary thermodynamic assessment 

Notes

Acknowledgment

The funding of this work by the Deutsche Forschungsgemeinschaft (DFG) within the joint Project PAK 461 under Grant Nos. Re1261/7, Ne428/12, and Schm 588/35 is gratefully acknowledged.

References

  1. 1.
    D.J. Chakrabarti and D.E. Laughlin, Phase Relations and Precipitation in Al-Mg-Si Alloys with Cu Additions, Prog. Mater Sci., 2004, 49, p 389-410CrossRefGoogle Scholar
  2. 2.
    S. Esmaeili, X. Wang, D.J. Lloyd, and W.J. Poole, On the Precipitation-Hardening Behavior of the Al-Mg-Si-Cu Alloy AA6111, Metall. Mater. Trans. A, 2003, 34(13), p 751-763CrossRefGoogle Scholar
  3. 3.
    A. Biswas, D.J. Siegel, and D.N. Seidman, Compositional Evolution of Q-Phase Precipitates in an Aluminum Alloy, Acta Mater., 2014, 75, p 322-336CrossRefGoogle Scholar
  4. 4.
    C.-A. Gandin, Modeling of Solidification, Grain Structures and Segregation in Metallic Alloys, Comptes Rendus Phys., 2010, 11, p 216-225ADSCrossRefGoogle Scholar
  5. 5.
    L. Thuinet and H. Combeau, A New Model of Microsegregation for Macrosegregation Computation in Multicomponent Steels, Comput. Mater. Sci., 2009, 45, p 294-304, ibd. pp 285-293CrossRefGoogle Scholar
  6. 6.
    T. Kraft, M. Rettenmayr, and H.E. Exner, An Extended Numerical Procedure for Predicting Microstructure and Microsegregation in Multicomponent Alloys, Model. Simul. Mater. Sci. Eng., 1996, 4, p 161-177ADSCrossRefGoogle Scholar
  7. 7.
    M. Rappaz and M. Rettenmayr, Simulation of Solidification, Curr. Opin. Solid State Mater. Sci., 1998, 3, p 275-282ADSCrossRefGoogle Scholar
  8. 8.
    A. Löffler, J. Gröbner, M. Hampl, H. Engelhardt, R. Schmid-Fetzer, and M. Rettenmayr, Solidifying Incongruently Melting Intermetallic Phases as Bulk Single Phases Using the Example of Al2Cu and Q-Phase in the Al-Mg-Cu-Si System, J. Alloys Compd., 2012, 515, p 123-127CrossRefGoogle Scholar
  9. 9.
    C. Wolverton, Crystal Structure and Stability of Complex Precipitate Phases in Al-Cu-Mg-(Si) and Al-Mg-Zn Alloys, Acta Mater., 2001, 49, p 3129-3142CrossRefGoogle Scholar
  10. 10.
    H.N. Thi, B. Drevet, J.M. Debierre, D. Camel, Y. Dabo, and B. Billia, Preparation of the Initial Solid-Liquid Interface and Melt in Directional Solidification, J. Cryst. Growth, 2003, 253, p 539-548ADSCrossRefGoogle Scholar
  11. 11.
    A. Löffler, K. Reuther, H. Engelhardt, D.M. Liu, and M. Rettenmayr, Resolidification of the Mushy Zone of Multiphase and Multicomponent Alloys in a Temperature Gradient—Experiments and Modeling, Acta Mater., 2015, 91, p p34-p40CrossRefGoogle Scholar
  12. 12.
    M. Buchmann and M. Rettenmayr, Microstructure Evolution During Melting and Resolidification in a Temperature Gradient, J. Cryst. Growth, 2005, 284, p 544-553ADSCrossRefGoogle Scholar
  13. 13.
    D. Liu, Y. Su, X. Li, L. Luo, J. Guo, and H. Fu, Influence of Thermal Stabilization on the Solute Concentration of the Melt in Directional Solidification, J. Cryst. Growth, 2010, 312, p 3658-3664ADSCrossRefGoogle Scholar
  14. 14.
    G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B, 1993, 47, p 558-561ADSCrossRefGoogle Scholar
  15. 15.
    G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6, p 15-50CrossRefGoogle Scholar
  16. 16.
    G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, p 11169-11186ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865-3868ADSCrossRefGoogle Scholar
  18. 18.
    P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, p 17953-17979ADSCrossRefGoogle Scholar
  19. 19.
    H.J. Monkhorst and J.D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, 1976, 13, p 5188-5192ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. Arnberg, B. Aurivillius, E. Wahlström, G. Malmros, J. Sjöblom, T.G. Strand, and V.F. Sukhoverkhov, The Crystal Structure of Al(x)Cu2 Mg(12-x)Si7 (h-AlCuMgSi), Acta Chem. Scand., 1980, 34a, p 1-5CrossRefGoogle Scholar
  21. 21.
    B. Grabowski, T. Hickel, and J. Neugebauer, Ab Initio Study of the Thermodynamic Properties of Nonmagnetic Elementary fcc Metals: Exchange-Correlation-Related Error Bars and Chemical Trends, Phys. Rev. B, 2007, 76, p 024309ADSCrossRefGoogle Scholar
  22. 22.
    N.D. Mermin, Thermal Properties of the Inhomogeneous Electron Gas, Phys. Rev., 1965, 137, p A1441ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    B. Sundman, B. Jansson, and J.-O. Andersson, The Thermocalc Database System, CALPHAD, 1985, 9, p 153-190CrossRefGoogle Scholar
  24. 24.
    T. Hickel, B. Grabowski, F. Körmann, and J. Neugebauer, Advancing Density Functional Theory to Finite Temperatures: Methods and Applications in Steel Design, J. Phys.: Condens. Matter, 2012, 24, p 053202ADSGoogle Scholar
  25. 25.
    A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Understanding Anharmonicity in fcc Materials: From its Origin to Ab Initio Strategies Beyond the Quasiharmonic Approximation, Phys. Rev. Lett., 2015, 114, p 195901ADSCrossRefGoogle Scholar
  26. 26.
    A. Glensk, B. Grabowski, T. Hickel, J. Neugebauer, in preparation. Google Scholar
  27. 27.
    A. Zendegani, F. Körmann, T. Hickel, B. Hallstedt, J. Neugebauer, in preparation.Google Scholar
  28. 28.
    M. Schick, B. Hallstedt, A. Glensk, B. Grabowski, T. Hickel, J. Gröbner, M. Hampl, J. Neugebauer, and R. Schmid-Fetzer, Assessment of the Binary Mg-Si Phase Diagram, CALPHAD, 2012, 37, p 77-86CrossRefGoogle Scholar
  29. 29.
    C. Ravi and C. Wolverton, First-Principles Study of Crystal Structure and Stability of Al-Mg-Si-(Cu) Precipitates, Acta Mater., 2004, 52, p 4213-4227CrossRefGoogle Scholar
  30. 30.
    C. Ravi, C. Wolverton, Comparison of thermodynamic databases for 3xx and 6xxx aluminum alloys. Metall. Mater. Trans.A 2005, 36(8), p 2013-2023Google Scholar
  31. 31.
    K. Chang, S. Liu, D. Zhao, Y. Du, L. Zhou, and L. Chen, Thermodynamic Description of the Al-Cu-Mg-Mn-Si Quinary System and Its Application to Solidification Simulation, Thermochim. Acta, 2011, 512, p 258-267CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • Andrea Löffler
    • 1
  • Ali Zendegani
    • 2
  • Joachim Gröbner
    • 3
  • Milan Hampl
    • 3
  • Rainer Schmid-Fetzer
    • 3
  • Hannes Engelhardt
    • 1
  • Markus Rettenmayr
    • 1
  • Fritz Körmann
    • 2
  • Tilmann Hickel
    • 2
    Email author
  • Jörg Neugebauer
    • 2
  1. 1.Otto Schott Institute of Materials ResearchFriedrich Schiller UniversityJenaGermany
  2. 2.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  3. 3.Institute of MetallurgyClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations