Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 36, Issue 2, pp 136–148 | Cite as

Cellular Automaton Modeling of Diffusion, Mixed and Interface Controlled Phase Transformation

  • K. J. Song
  • Y. H. Wei
  • Z. B. Dong
  • X. Y. Wang
  • W. J. Zheng
  • K. Fang
Article

Abstract

A cellular automaton (CA) model coupled with Svoboda’s analytic solution of diffusional phase transformation was established to simulate β-α transition in titanium alloy. A numeric definition of diffusion, mixed and interface mode transformation is put forward and simulated by the newly developed CA model. To the best of our knowledge, this is the first model that is capable of quantifying the effect of interface moving (interface mobility coefficient or transformation driving force factor) and solute diffusion process (diffusion coefficient) on phase transformation types. A critical interface mobility coefficient exists for mixed mode transformation, below and above which interface mode and diffusion mode dominate, respectively. This indicated that, in isothermal diffusion/mixed/interface mode phase transformations, solute diffusion distance and solute concentration gradient are decreasing gradually with time. Furthermore, it was found during cooling transformation that diffusion mode transformation at high temperature shifts to interface mode at low temperature, where a high cooling rate corresponds to a high transition temperature.

Keywords

cellular automaton diffusional phase transformations interfacial mobility mixed mode interfacial diffusion Svoboda’s kinetic model 

Notes

Acknowledgment

The authors gratefully acknowledge the financial support of the project from the National Natural Science Foundation of China (Grant No. 51175253).

References

  1. 1.
    M. Hillert, L. Hoeglund, and J. Agren, Diffusion-Controlled Lengthening of Widmanstaetten Plates, Acta Mater., 2003, 51, p 2089-2095CrossRefGoogle Scholar
  2. 2.
    Y.J. Lan, D.Z. Li, and Y.Y. Li, Modeling Austenite Decomposition into Ferrite at Different Cooling Rate in Low-Carbon Steel with Cellular Automaton Method, Acta Mater., 2004, 52, p 1721-1729CrossRefGoogle Scholar
  3. 3.
    M. Hillert, J. Odqvist, and J. Agren, Interface Conditions during Diffusion-Controlled Phase Transformations, Scr. Mater., 2004, 50, p 547-550CrossRefGoogle Scholar
  4. 4.
    J.D.C. Teixeira, B. Appolaire, E.A. Gautier, S. Denis, and L. Hericher, Modeling of the Phase Transformations in Near-β Titanium Alloys During the Cooling After Forging, Comput. Mater. Sci., 2008, 42, p 266-280CrossRefGoogle Scholar
  5. 5.
    J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, Oxford, 2002, p 235CrossRefGoogle Scholar
  6. 6.
    F.V. Nolfi, P.G. Shewman, and J.S. Foster, The Dissolution and Growth Kinetics of Spherical Precipitates, Trans. Metall. Soc. AIME, 1969, 245, p 1427-1432Google Scholar
  7. 7.
    C. Bos, M.G. Mecozzi, and J. Sietsma, A Microstructure Model for Recrystallisation and Phase Transformation During the Dual-Phase Steel Annealing Cycle, Comput. Mater. Sci., 2010, 48, p 692-699CrossRefGoogle Scholar
  8. 8.
    I. Katzarov, S. Malinov, and W. Sha, Finite Element Modeling of the Morphology of β-α Phase Transformation in Ti-6Al-4V Alloy, Metall. Mater. Trans. A, 2002, 33, p 1027-1040CrossRefGoogle Scholar
  9. 9.
    J. Odqvist, B. Sundman, and J. Agren, A General Method for Calculating Deviation from Local Equilibrium at Phase Interfaces, Acta Mater., 2003, 51, p 1035-1043CrossRefGoogle Scholar
  10. 10.
    G.B. Olson, H.K.D.H. Bhadeshia, and M. Cohen, Coupled Diffusional and Displacive Transformations, Acta. Metall., 1989, 37, p 381-389CrossRefGoogle Scholar
  11. 11.
    C. Bos and J. Sietsma, Application of the Maximum Driving Force Concept for Solid-State Partitioning Phase Transformations in Multi-component Systems, Acta Mater., 2009, 57, p 136-144CrossRefGoogle Scholar
  12. 12.
    Jilt Sietsma and Sybrand van der Zwaag, A Concise Model for Mixed-mode Phase Transformations in the Solid State, Acta Mater., 2004, 52, p 4143-4152CrossRefGoogle Scholar
  13. 13.
    E. Gamsjager, M. Militzer, F. Fazeli, J. Svoboda, and F.D. Fischer, Interface Mobility in Case of the Austenite-to-Ferrite Phase Transformation, Comput. Mater. Sci., 2006, 37, p 94-100CrossRefGoogle Scholar
  14. 14.
    R.G. Thiessen, I.M. Richardson, and J. Sietsma, Physically Based Modelling of Phase Transformations During Welding of Low-Carbon Steel, Mater. Sci. Eng. A, 2006, 427, p 223-231CrossRefGoogle Scholar
  15. 15.
    H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps-the Plasticity and Creep of Metals and Ceramics, Pergamon, New York, 1982, p 431Google Scholar
  16. 16.
    M. Hillert, Solute Drag, Solute Trapping and Diffusional Dissipation of Gibbs Energy, Acta Mater., 1999, 47(18), p 4481-4505CrossRefGoogle Scholar
  17. 17.
    J. Svoboda, F.D. Fischer, P. Fratzl, E. Gamsjager, and N.K. Simha, Kinetics of Interfaces During Diffusional Transformations, Acta Mater., 2001, 49, p 1249-1259CrossRefGoogle Scholar
  18. 18.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Oxford, 1981, p 262Google Scholar
  19. 19.
    L. Yu, TA15 Titanium Alloy Components During TIG Welding, Master Thesis, Harbin Institute of Technology, China, 2007, p 14Google Scholar
  20. 20.
    K.J. Song, Y.H. Wei, Z.B. Dong, R. Ma, X.H. Zhan, W.J. Zheng, and K. Fang, Virtual Front Tracking Cellular Automaton Modeling of Isothermal β to α Phase Transformation with Crystallography Preferred Orientation of TA15 Alloy, Model. Simul. Mater. Sci. Eng., 2014, 22(1), p 015006CrossRefADSGoogle Scholar
  21. 21.
    K.J. Song, Y.H. Wei, Z.B. Dong, X.H. Zhan, W.J. Zheng, and K. Fang, Numerical Simulation of β to α Phase Transformation in Heat Affected Zone During Welding of TA15 Alloy, Comput. Mater. Sci., 2013, 72, p 93-100CrossRefGoogle Scholar
  22. 22.
    M.F. Zhu, W. Cao, S.L. Chen, C.P. Hong, and Y.A. Chang, Modeling of Microstructure and Microsegregation in Solidification of Multi-component Alloys, J. Phase Equilib. Diff., 2007, 28(1), p 130-138CrossRefGoogle Scholar
  23. 23.
    B. Appolaire, L. Hericher, and E.A. Gautier, Modelling of Phase Transformation Kinetics in Ti Alloys-Isothermal Treatments, Acta Mater., 2005, 53, p 3001-3011CrossRefGoogle Scholar
  24. 24.
    R.G. Thiessen, J. Sietsma, T.A. Palmer, J.W. Elmer, and I.M. Richardson, Phase-field Modelling and Synchrotron Validation of Phase Transformations in Martensitic Dual-Phase Steel, Acta Mater., 2007, 55, p 601-614CrossRefGoogle Scholar
  25. 25.
    S.I. Vooijs, Y. Van Leeuwen, J. Sietsma, and S. Van Der Zwaag, On the Mobility of the Austenite-Ferrite Interface in Fe-Co and Fe-Cu, Metall. Mater. Trans. A, 2000, 31, p 379-385CrossRefGoogle Scholar
  26. 26.
    A. Yamanaka, T. Takaki, and Y. Tomita, Multi-phase-field Modeling of Diffusive Solid Phase Transition in Carbon Steel During Continuous Cooling Transformation, J. Cryst. Growth, 2008, 310, p 1337-1342CrossRefADSGoogle Scholar
  27. 27.
    W.R. Qiang, Theoretical Research on Phonon Spectrum and Thermodynamics of Vanadium and Its Hydride, Master thesis, Southwest Jiaotong University, China, 1989Google Scholar
  28. 28.
    K.J. Song, Z.B. Dong, K. Fang, and Y.H. Wei, Cellular Automaton Modelling of Dynamic Recrystallisation Microstructure Evolution During Friction Stir Welding of Titanium Alloy, Mater. Sci. Technol., 2014, 30(6), p 700-711CrossRefGoogle Scholar
  29. 29.
    T.D. Rane, R. Dewri, S. Ghosh, K. Mitra, and N. Chakraborti, Modeling the Recrystallization Process Using Inverse Cellular Automata and Genetic Algorithms: Studies Using Differential Evolution, J. Phase Equilib. Diffus., 2005, 26(4), p 311-321CrossRefGoogle Scholar
  30. 30.
    S. Kou, Welding Metallurgy, Wiley, Hoboken, 2003Google Scholar
  31. 31.
    I. Loginova, J. Agren, and G. Amberg, On the Formation of Widmanstatten Ferrite in Binary Fe-C Phase-Field Approach, Acta Mater., 2004, 52, p 4055-4063CrossRefGoogle Scholar
  32. 32.
    C. Bos and J. Sietsma, A Mixed-Mode Model for Partitioning Phase Transformations, Scr. Mater., 2007, 57, p 1085-1088CrossRefGoogle Scholar
  33. 33.
    M. Hillert and M. Schalin, Modeling of Solute Drag in the Massive Phase Transformation, Acta Mater., 2000, 48, p 461-468CrossRefGoogle Scholar
  34. 34.
    W. Wang, J.L. Murray, S.Y. Hu, L.Q. Chen, and H. Weiland, Modeling of Plate-Like Precipitates in Aluminum Alloys-Comparison Between Phase Field and Cellular Automaton Methods, J. Phase Equilib. Diffus., 2007, 28(3), p 258-264CrossRefGoogle Scholar
  35. 35.
    I. Loginova, J. Odqvist, G. Amberg, and J. Agren, The Phase-Field Approach and Solute Drag Modeling of the Transition to Massive γ → α Transformation in Binary Fe-C Alloys, Acta Mater., 2003, 51, p 1327-1339CrossRefGoogle Scholar
  36. 36.
    A. Borgenstam, A. Engstrom, L. Hoglund, and J. Agren, DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilib., 2000, 21, p 269-280CrossRefGoogle Scholar
  37. 37.
    J. Svoboda, E. Gamsjager, F.D. Fischer, and P. Fratzl, Application of the Thermodynamic Extremal Principle to the Diffusional Phase Transformations, Acta Mater., 2004, 52, p 959-967CrossRefGoogle Scholar
  38. 38.
    H. Larsson, H. Strandlund, and M. Hillert, Unified Treatment of Kirkendall Shift, Migration of Phase Interfaces, Acta Mater., 2006, 54, p 945-951CrossRefGoogle Scholar
  39. 39.
    J. Svoboda, E. Gamsjager, F.D. Fischer, Y. Liu, and E. Kozeschnik, Diffusion Processes in a Migrating Interface: The Thick-Interface Model, Acta Mater., 2011, 59, p 4775-4786CrossRefGoogle Scholar
  40. 40.
    K. Thornton, J. Agren, and P.W. Voorhees, Modelling the Evolution of Phase Boundaries in Solids at the Meso- and Nano-scales, Acta Mater., 2003, 51, p 5675-5710CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • K. J. Song
    • 1
  • Y. H. Wei
    • 2
  • Z. B. Dong
    • 1
  • X. Y. Wang
    • 1
  • W. J. Zheng
    • 1
  • K. Fang
    • 1
  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  2. 2.School of Materials Science and TechnologyNanjing University of Aeronautics & AstronauticsNanjingChina

Personalised recommendations