Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 35, Issue 6, pp 701–710 | Cite as

Experimental Determination of Solid-Liquid Equilibria with Reactive Components: Example of the Fe-Ti-B Ternary System

  • A. Antoni-ZdziobekEmail author
  • M. Gospodinova
  • F. Bonnet
  • F. Hodaj
Article

Abstract

A deep knowledge of phase relationships involving a liquid phase is of critical interest in solidification process. If chemically active elements are involved, the conditions under which phase equilibria will be studied should be carefully defined. An illustration is given by the investigation of the Fe-rich corner of the Fe-Ti-B system between 1200 and 1450 °C, for which Ti and B reactivity, very low solubility and flotation effects of TiB2 should be taken into account. The strategy is to combine both static and dynamic methods. Electromagnetic phase separation technique, developed at our laboratory, allows to determine phase field boundaries in the liquid/solid domains at selected temperatures and to locate univariant lines on a liquidus projection. Differential thermal analysis is supplemented by characterization of resulting microstructures to establish liquidus temperature of selected alloys and to evaluate ternary invariant points. These new experimental data may be used as a basis for a relevant thermodynamic description of the investigated ternary system.

Keywords

experimental phase equilibria Fe-Ti-B isothermal equilibration microstructure ternary phase diagram 

Notes

Acknowledgments

This work is supported by the French National Research Agency (ANR) through the ADRERA project ANR-09-MAPR-0001.

References

  1. 1.
    V. Raghavan, The B-Fe-Ti (Boron-Iron-Titanium) System, Phase Diagrams of Ternary Iron Alloys, Part 6, Indian Institute of Metals, Calcutta, 1992, p 430-440Google Scholar
  2. 2.
    V. Raghavan, B-Fe-Ti (Boron-Iron-Titanium), J. Phase Equilib., 2003, 24(5), p 455-456CrossRefMathSciNetGoogle Scholar
  3. 3.
    T.F. Federov and Yu.B. Kuzma, The Titanium-Iron-Boron System, Inorg. Mater., 1967, 3(8), p 1307-1308Google Scholar
  4. 4.
    L. Ottavi, J.M. Chaix, C. Allibert, and H. Pastor, Thermodynamic Guidelines for the Liquid Phase Sintering of TiB2 Cermets, Solid State Phenom., 1992, 25-26, p 543-550CrossRefGoogle Scholar
  5. 5.
    L. Ottavi, C. Saint-Jours, N. Valignat, and C.H. Allibert, Phase Equilibria and Solidification of Fe-Ti-B Alloys in the Region Close to Fe-TiB2, Z. Metall., 1992, 83(2), p 80-83Google Scholar
  6. 6.
    G.V. Samsonov, Nature of Interaction Between Titanium Boride and the Iron-Group Metals, Metall. Term. Obrabot. Metall., 1958, 1, p 35-38Google Scholar
  7. 7.
    V.I. Eremenko, Multicomponent Titanium Alloys, Izd. AN USSR Kiev, 1962, cited by [3]Google Scholar
  8. 8.
    A.K. Shurin and V.E. Panarin, Phase Equilibria and Structure of Alloys Fe-TiB2, Fe-Zr B2 and Fe-HfB2, Russ. Metall., 1974, 5, p 192-195Google Scholar
  9. 9.
    I. Smid and E. Kny, Evaluation of Binder Phases for Hard Metal Systems Based On TiB2, Int. J. Refract. Hard Met., 1988, 7, p 135-138Google Scholar
  10. 10.
    C. Allibert, A. Wicker, J. Driole, and E. Bonnier, Détermination de diagrammes de phases à haute température dans les systèmes de métaux réfractaires, Rev. Int. Hautes Temp., 1970, 7, p 45-50Google Scholar
  11. 11.
    C. Allibert, A. Wicker, J. Driole, and E. Bonnier, Etude d’alliages de métaux réfractaires à base de niobium, Rev. Phys. Appl., 1970, 5, p 449-453CrossRefGoogle Scholar
  12. 12.
    J. Driole, C. Allibert, E. Bonnier, and A. Wicker, Process of Separation, Particularly of a Solid Phase, from a Matrix in Liquid Phase, United States, Agence Nationale de Valorisation de la Recherche (ANVAR) (Neuilly-sur-Seine, France), Patent 4049437, 1977. http://www.freepatentsonline.com/4049437.html
  13. 13.
    B. Sundman, B. Jansson, and J.O. Andersson, The Thermocalc Databank System, CALPHAD, 1985, 9(2), p 153-190CrossRefGoogle Scholar
  14. 14.
    SGTE Alloy Solutions Database SSOL4 Version 4.10. Thermo-Calc Software AB, Stockholm, Sweden, 2008Google Scholar
  15. 15.
    B. Hallemans, P. Wollants, and J.R. Roos, Thermodynamic Reassessment and Calculation of the Fe-B Phase Diagram, Z. Metall., 1994, 85(10), p 676-682Google Scholar
  16. 16.
    K.C. Hari Kumar, L. Dumitrescu, B. Sundman, and P. Wollants, Thermodynamic Assessment of the Fe-Ti System with Special Emphasis on the Modelling of the FeTi (B2) Phase, XXVIII Calphad Meeting, Grenoble, May 2-7 1999, p 95Google Scholar
  17. 17.
    C. Bätzner, System B-Ti, COST 507, Thermochemical Database for Light Metal Alloys, Eur18499, I. Ansara, A.T. Dinsdale, and M.H. Rand, Eds., Vol. 2, 1998, p 129-134Google Scholar
  18. 18.
    A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15(4), p 317-425CrossRefGoogle Scholar
  19. 19.
    O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348CrossRefGoogle Scholar
  20. 20.
    Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloy Bismuth-Gallium-Tin at 723 K, Choice of An Analytical Representation of Integral and Partial Excess Functions of Mixing, J. Chim. Phys., 1975, 72, p 83-88Google Scholar
  21. 21.
    B. Sundman and J. Ågren, A Regular Solution Model for Phases with Several Components and Sublattices, Suitable for Computer Applications, J. Comput. Phys. Chem. Solids, 1981, 42, p 297-301ADSCrossRefGoogle Scholar
  22. 22.
    J.O. Anderson, A.F. Guillermet, M. Hillert, B. Jansson, and B. Sundman, A Compound-Energy Model of Ordering in a Phase with Sites of Different Coordination Numbers, Acta Metall., 1986, 34(3), p 437-445CrossRefGoogle Scholar
  23. 23.
    M. Hillert, The Compound Energy Formalism, J. Alloys Compd., 2001, 320(2), p 161-176CrossRefGoogle Scholar
  24. 24.
    G.H. Geigerand and D.R. Poirier, Transport Phenomena in Metallurgy, Addison-Wesley Publishing Company, Reading, 1980, p 461Google Scholar
  25. 25.
    S.H. Moll and R.E. Ogilvie, Solubility and Diffusion of Titanium in Iron, Trans. TMS AIME, 1959, 215(4), p 613-618Google Scholar
  26. 26.
    S. Nakamichi, S. Tsurekawa, Y. Morizono, M. Nishiba, and A. Chiba, Diffusion of Carbon and Titanium in γ-Iron in a Magnetic Field and a Magnetic Field Gradient, J. Mater. Sci., 2005, 40, p 3191-3198ADSCrossRefGoogle Scholar
  27. 27.
    P.E. Busby, M.E. Warga, and C. Wells, Diffusion and Solubility of Boron in Iron and Steel, Trans. TMS AIME, 1953, 197(11), p 1463-1468Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • A. Antoni-Zdziobek
    • 1
    • 2
    Email author
  • M. Gospodinova
    • 1
    • 2
  • F. Bonnet
    • 3
  • F. Hodaj
    • 1
    • 2
  1. 1.SIMAPUniv. Grenoble AlpesGrenobleFrance
  2. 2.CNRS, Grenoble INPSIMAPGrenobleFrance
  3. 3.Arcelor Mittal Research SAMaizières-les-MetzFrance

Personalised recommendations