Journal of Phase Equilibria and Diffusion

, Volume 35, Issue 2, pp 137–145 | Cite as

On the Liquid/Solid Phase Equilibria in the Al-Rich Corner of the Al-Si-Ti Ternary System

  • O. DezellusEmail author
  • B. Gardiola
  • J. Andrieux
  • M. Lomello-Tafin
  • J. C. Viala


The nature of liquid-solid phase equilibria in the Al-rich corner of the Al-Si-Ti system are determined by drawing three isothermal sections at 620, 680 and 727 °C. The solubility of Ti in Al-Si liquids is determined for four different compositions (0, 9, 13 and 18 at.%Si) at temperature below 800 °C. Combination of the two sets of experimental results leads to an attempt of liquidus projection. The primary crystallization surface of Al3Ti is found to extend up to 9.5 at.%Si in the liquid phase at 620 °C and 11 at.%Si at 727 °C. The solubility of Ti is found to be not significantly dependent on the Si content of the liquid. From DSC measurements and deduction on microstructure, the last invariant reaction of the solidification path is found to be quasi-peritectic: \({\text{L}} + \uptau_{1} - {\text{Ti}}_{7} {\text{Al}}_{5} {\text{Si}}_{12} \Leftrightarrow {\text{Al}} + {\text{Si}} .\)


aluminum alloys differential scanning calorimetry (DSC) invariant point isopleth isotherm liquidus surface ternary system 



Chemical microanalyses have been performed by the inorganic analysis team of Dr. Ayouni of the Analytical Sciences Institute. SEM and EPMA characterizations were performed at the ‘‘Centre Technologique des Microstructures, Université Lyon 1’’. The authors acknowledge gratefully the members of these services for their assistance.


  1. 1.
    M. Easton and D. Stjohn, Grain Refinement of Aluminum Alloys: Part I. The Nucleant and Solute Paradigms—A Review of the Literature, Metall. Mater. Trans. A, 1999, 30(6), p 1613-1623CrossRefGoogle Scholar
  2. 2.
    M. Easton and D. StJohn, Grain Refinement of Aluminum Alloys: Part II. Confirmation of, and a Mechanism for, the Solute Paradigm, Metall. Mater. Trans. A, 1999, 30(6), p 1625-1633CrossRefGoogle Scholar
  3. 3.
    L. Arnberg, L. Bäckerud, and H. Klang, Intermetallic Particles in Al-Ti-B-Type Master Alloys for Grain Refinement of Aluminium, Met. Technol., 1972, 9(1), p 7-13CrossRefGoogle Scholar
  4. 4.
    B.S. Murty, S.A. Kori, and M. Chakraborty, Grain Refinement of Aluminium and Its Alloys by Heterogeneous Nucleation and Alloying, Int. Mater. Rev., 2002, 47(1), p 3-29CrossRefGoogle Scholar
  5. 5.
    M. Abdel-Reihim, N. Hess, W. Reif, and M.E.J. Birch, Effect of Solute Content on the Grain Refinement of Binary Alloys, J. Mater. Sci., 1987, 22(1), p 213-218ADSCrossRefGoogle Scholar
  6. 6.
    M. Johnsson, Influence of Si and Fe on the Grain-Refinement of Aluminum, Z. Metall., 1994, 85(11), p 781-785Google Scholar
  7. 7.
    J.A. Spittle, J.M. Keeble, and M.A. Meshhedani, The Grain Refinement of Al-Si Foundry Alloys, Light Metals, R. Huglen, Ed., TMS, Warrendale, PA, 1997, p 795-800 Google Scholar
  8. 8.
    T.E. Quested, A.T. Dinsdale, and A.L. Greer, Thermodynamic Evidence for a Poisoning Mechanism in the Al-Si-Ti System, Mater. Sci. Technol., 2006, 22(6), p 1126-1134CrossRefGoogle Scholar
  9. 9.
    P. Perrot, The Al-Si-Ti System, Ternary Alloys, G. Petzow and G. Effenberg, Ed., VCH, Weinheim, 1988, p 557 Google Scholar
  10. 10.
    A. Zakharov, I. Guldin, A. Arnold, and Y. Matsenko, Phase-Equilibria in the Al-Si-Ti System in the 10-14 Percent Si and 0-6 Percent Ti Concentration Range, Russ. Metall., 1998, 4, p 185-189Google Scholar
  11. 11.
    M. Peronnet, F. Barbeau, F. Bosselet, J.C. Viala, and J. Bouix, Comportement Chimique du Titane Dans un Alliage Liquide Aluminium-Silicium, J. Phys. IV, 1999, 9(PR4), p 6Google Scholar
  12. 12.
    S. Liu, F. Weitzer, J.C. Schuster, N. Krendelsberger, and Y. Du, On the Reaction Scheme and Liquidus Surface in the Ternary System Al-Si-Ti, Int. J. Mater. Res., 2008, 99(7), p 705-711CrossRefGoogle Scholar
  13. 13.
    O. Shob, H. Nowotny, and F. Benezovsky, The Ternary System (Titanium, Zirconium, Hafnium) Aluminum-Silicon, Planseeber. Pulvermetall., 1962, 10, p 65-71Google Scholar
  14. 14.
    S. Gupta, Intermetallic Compounds in Diffusion Couples of Ti with an Al-Si Eutectic Alloy, Mater. Charact., 2002, 49(4), p 321-330CrossRefGoogle Scholar
  15. 15.
    M. Bulanova, L. Tretyachenko, M. Golovkova, and K. Meleshevich, Phase Equilibria in the α-Ti-Al-Si Region of the Ti-Si-Al System, J. Phase Equilib. Diffus., 2004, 25(3), p 209-229CrossRefGoogle Scholar
  16. 16.
    W.V. Youdelis, Calculated Al-Ti-Si Phase Diagram and Interpretation of Grain Refinement Results, Met. Sci., 1978, 12(8), p 363-366CrossRefGoogle Scholar
  17. 17.
    J. Gröbner, D. Mirković, and R. Schmid-Fetzer, Thermodynamic Aspects of Grain Refinement of Al-Si Alloys Using Ti and B, Mater. Sci. Eng. A, 2005, 395(1-2), p 10-21CrossRefGoogle Scholar
  18. 18.
    A. Raman and K. Schubert, The Constitution of Some Alloy Series Related to TiAl3. II. Investigations in Some T-Al-Si and T4…6-In Systems, Z. Metall., 1965, 56(1), p 44-52Google Scholar
  19. 19.
    T. Magnusson and L. Arnberg, Density and Solidification Shrinkage of Hypoeutectic Aluminum-Silicon Alloys, Metall. Mater. Trans. A, 2001, 32(10), p 2605-2613CrossRefGoogle Scholar
  20. 20.
    J. Pouchou and F. Pichoir, Very High Elements x-Ray-Microanalysis—Recent Models of Quantification, J. Microsc. Spectrosc. Electron., 1986, 11(4), p 229-250Google Scholar
  21. 21.
    C.J. Smithells, W.F. Gale, and T.C. Totemeier, Smithells Metals Reference Book, Volume 1, 4th ed., Butterworths, London, 1967Google Scholar
  22. 22.
    C. Brukl, H. Nowotny, O. Schob, and F. Benesovsky, Die Kristallstruckturen von TiSi, Ti(Al, Si)2 und Mo(Al, Si)2, Monatsh. Chem., 1961, 92(3), p 781-788CrossRefGoogle Scholar
  23. 23.
    O. Dezellus, B. Gardiola, and J. Andrieux, On the solubility of Group IV elements (Ti, Zr, Hf) in liquid aluminium below 800 °C, J. Phase Equilib. Diff., 2014. doi: 10.1007/s11669-013-0278-2
  24. 24.
    U.R. Kattner, J.-C. Lin, and Y.A. Chang, Thermodynamic Assessment and Calculation of the Ti-Al System, Metall. Trans. A, 1992, 23(8), p 2081-2090CrossRefGoogle Scholar
  25. 25.
    K. Shibata, T. Sato, and G. Ohira, The Solute Distributions in Dilute Al-Ti Alloys During Unidirectional Solidification, J. Cryst. Growth, 1978, 44(4), p 435-445ADSCrossRefGoogle Scholar
  26. 26.
    A. Abdel-Hamid, C.H. Allibert, and F. Durand, Equilibrium Between Titanium-Aluminum (TiAl3) and Molten Aluminum: Results from the Technique of Electromagnetic Phase Separation, Z. Metall., 1984, 75(6), p 455-458Google Scholar
  27. 27.
    W.L. Fink, H. Van, and P.M. Budge, Constitution of high-purity aluminum-titanium alloys, Am. Inst. Min. Met. Eng., 1931, 393, p 18Google Scholar
  28. 28.
    M. Heckler, Solubility of Titanium in Liquid Aluminum, Aluminium (Dusseldorf), 1974, 50(6), p 405-407Google Scholar
  29. 29.
    V.T. Witusiewicz, A.A. Bondar, U. Hecht, S. Rex, and T.Y. Velikanova, The Al-B-Nb-Ti System: III. Thermodynamic Re-evaluation of the Constituent Binary System Al-Ti, J. Alloys Compd., 2008, 465(1-2), p 64-77CrossRefGoogle Scholar
  30. 30.
    I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida, Phase Equilibria in the Ti-Al Binary System, Acta Mater., 2000, 48(12), p 3113-3123CrossRefGoogle Scholar
  31. 31.
    A. Prince, Alloy Phase Equilibria, Elsevier Science, Amsterdam, 1966Google Scholar
  32. 32.
    J.C. Schuster and M. Palm, Reassessment of the Binary Aluminum-Titanium Phase Diagram, J. Phase Equilib. Diffus., 2006, 27(3), p 255-277CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • O. Dezellus
    • 1
    Email author
  • B. Gardiola
    • 1
  • J. Andrieux
    • 1
  • M. Lomello-Tafin
    • 2
  • J. C. Viala
    • 1
  1. 1.Laboratoire des Multimatériaux et InterfacesUniversité Claude Bernard - UMR CNRS 5615VilleurbanneFrance
  2. 2.Laboratoire SYMME, Polytech’Annecy-ChambéryUniversité de SavoieAnnecy-le-vieuxFrance

Personalised recommendations