Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 35, Issue 2, pp 120–126 | Cite as

On the Solubility of Group IV Elements (Ti, Zr, Hf) in Liquid Aluminum Below 800°C

  • O. DezellusEmail author
  • B. Gardiola
  • J. Andrieux
Article

Abstract

The solubility of group IV transition metals Ti, Zr, and Hf in liquid Al was measured by the settling technique coupled with ICP-AES analysis after dissolution in hydrochloric acid. The kinetic aspect of the settling technique was studied in order to show that, after a cooling step, thermodynamic equilibrium between the liquid and solid phases could be achieved after only 1 h. Finally, it was verified that solubility values obtained after a cooling or a heating step were fully consistent. The present results demonstrate that the immersion-and-settling technique allows reliable solubility values to be determined. The results confirm the values previously reported in the literature and the good description for the three binaries by the existing CALPHAD optimizations concerning the liquidus below 800°C.

Keywords

aluminum alloys binary system experimental techniques liquidus 

Notes

Acknowledgments

The authors are grateful to the inorganic analysis team of Dr. Ayouni of the Analytical Sciences Institute for chemical analyses, “Centre Technologique des Microstructures, Université Lyon 1” for SEM and EPMA characterizations and Dr. Jeanneau from the “Centre de diffractométrie Henri Longchambon (Université Lyon1)” for the single-crystal data analyzes. The authors gratefully acknowledge the members of these organizations for their help and Marc Lomello-Tafin and Amin Janghorban for providing Al3Zr and fruitful discussions.

References

  1. 1.
    K.E. Knipling, D.C. Dunand, and D.N. Seidman, Criteria for Developing Castable, Creep-Resistant Aluminum-Based Alloys—A Review, Z. Metallkd., 2006, 97(3), p 246-265CrossRefGoogle Scholar
  2. 2.
    K.E. Knipling, D.C. Dunand, and D.N. Seidman, Precipitation Evolution in Al-Zr and Al-Zr-Ti Alloys During Aging at 450-600°C, Acta Mater., 2008, 56(6), p 1182-1195CrossRefGoogle Scholar
  3. 3.
    M.J. Koczak, and W.E. Frazier, High Strength Powder Metallurgy Aluminum Alloys II: Proceedings, G.J. Hildeman, and M.J. Koczak, Ed., (TMS, Warrendale, PA, 1986), p 353-366Google Scholar
  4. 4.
    J.F. Nie and B.C. Muddle, Microstructure in Rapidly Solidified AlTiNi Alloys, Mater. Sci. Eng., A, 1996, 215(1-2), p 92-103CrossRefGoogle Scholar
  5. 5.
    H. Jones and W.M. Rainforth, The Coarsening of Dispersed Al3Ti in Aluminum-Based Matrices, Metall. Mater. Trans. A, 2003, 34(2), p 419-421CrossRefGoogle Scholar
  6. 6.
    A.L. Beresina, E.A. Segida, and G.V. Kurdyumov, Microstructure Formation in Binary Al-TM Alloys Under Non-equilibrium Solidification, J. Phys., 2009, 144, p 012096Google Scholar
  7. 7.
    W.E. Frazier and M.J. Koczak, Mechanical and Thermal Stability of Powder Metallurgy Aluminum-Titanium Alloys, Scr. Metall., 1987, 21(2), p 129-134CrossRefGoogle Scholar
  8. 8.
    J.A. Hawk, K.R. Lawless, and H.G.F. Wilsdorf, Tensile Strength of MA Aluminum Alloys With Titanium Additions, Scr. Metall., 1989, 23(1), p 119-124CrossRefGoogle Scholar
  9. 9.
    S.H. Wang and P.W. Kao, The Strengthening Effect of Al3Ti in High Temperature Deformation of Al-Al3Ti Composites, Acta Mater., 1998, 46(8), p 2675-2682CrossRefGoogle Scholar
  10. 10.
    I.C. Barlow, H. Jones, and W.M. Rainforth, Evolution of Microstructure and Hardening, and the Role of Al3Ti Coarsening, During Extended Thermal Treatment in Mechanically Alloyed Al-Ti-O Based Materials, Acta Mater., 2001, 49(7), p 1209-1224CrossRefGoogle Scholar
  11. 11.
    J. Murray, A. Peruzzi, and J.P. Abriata, The Al-Zr (Aluminum-Zirconium) System, J. Phase Equilib., 1992, 13(3), p 277-291CrossRefGoogle Scholar
  12. 12.
    J. Murray, A.J. McAlister, and D.J. Wei, The Al-Hf (Aluminum-Hafnium) System, J. Phase Equilib., 1998, 19(4), p 376-379CrossRefGoogle Scholar
  13. 13.
    J.C. Schuster and M. Palm, Reassessment of the Binary Aluminum-Titanium Phase Diagram, J. Phase Equilib. Diffus., 2006, 27(3), p 255-277CrossRefGoogle Scholar
  14. 14.
    D.A. Porter, K.E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, 3rd ed., CRC Press, Boca Raton, 2009Google Scholar
  15. 15.
    K.E. Knipling, D.C. Dunand, and D.N. Seidman, Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys, Metall. Mater. Trans. A, 2007, 38(10), p 2552-2563CrossRefGoogle Scholar
  16. 16.
    W. Manchot and A. Leber, Compounds and Alloys of Titanium with Aluminium, Z. Anorg. Allg. Chem., 1926, 150, p 26-34CrossRefGoogle Scholar
  17. 17.
    W.L. Fink, H. Van, and P.M. Budge, Constitution of High-Purity Aluminum-Titanium Alloys, Am. Inst. Mining Met. Eng., 1931, 393, p 18Google Scholar
  18. 18.
    H. Bohner, Supercooling of High-Melting Intermetallic Compounds of Aluminum Alloys, Z. Metallkd., 1934, 26, p 268-271Google Scholar
  19. 19.
    M. Heckler, Solubility of Titanium in Liquid Aluminium, Aluminium (Duesseldorf), 1974, 50(6), p 405-407Google Scholar
  20. 20.
    K. Shibata, T. Sato, and G. Ohira, The Solute Distributions in Dilute Al-Ti Alloys During Unidirectional Solidification, J. Cryst. Growth, 1978, 44(4), p 435-445ADSCrossRefGoogle Scholar
  21. 21.
    A. Abdel-Hamid, C.H. Allibert, and F. Durand, Equilibrium Between Titanium-Aluminum (TiAl3) and Molten Aluminum: Results From the Technique of Electromagnetic Phase Separation, Z. Metallkd., 1984, 75(6), p 455-458Google Scholar
  22. 22.
    W.L. Fink and L.A. Willey, Am. Inst. Mining Met. Eng., 1939, 1009, p 12Google Scholar
  23. 23.
    P. Chiotti and P.F. Woerner, Metal Hydride Reactions. I. Reaction of Hydrogen With Solutes in Liquid Metal Solvents, J. Less-Common Met., 1964, 7(2), p 111-119CrossRefGoogle Scholar
  24. 24.
    B.B. Rath, G.P. Mohanty, and L.F. Mondolfo, The Aluminum-Rich End of the Aluminum-Hafnium Equilibrium Diagram, J. Inst. Met., 1961, 89, p 248-249Google Scholar
  25. 25.
    L.L. Rokhlin, N.R. Bochvar, T.V. Dobatkina, and V.G. Leont’ev, Study of the Aluminum-Rich Part of Al-Hf Phase Diagram, Metally, 2009, 3, p 93-98Google Scholar
  26. 26.
    A. Janghorban, A. Antoni-Zdziobek, M. Lomello-Tafin, C. Antion, T. Mazingue, and A. Pisch, Phase Equilibria in the Aluminium-Rich Side of the Al-Zr System, J. Therm. Anal. Calorim., 2013, 112, p 301-305. doi: 10.1007/s10973-012-2827-z CrossRefGoogle Scholar
  27. 27.
    V.M. Glazov, G.P. Lazarev, and G.A. Korol’kov, The Solubility of Some Transition Metals in Aluminium, Metalloved. Term. Obrab. Met., 1959, 10, p 48-50Google Scholar
  28. 28.
    M.E. Drits, E.S. Kadaner, and V.I. Kuz’mina, Solubility of Silicon and Zirconium in Aluminium, Izv. Akad. Nauk SSSR Metal., 1968, 1, p 170-175Google Scholar
  29. 29.
    G.M. Kuznetsov, A.D. Barsukov, and M.I. Abas, Solubility of Mn, Cr, Ti and Zr in Al in the Solid State, Sov. Non-Ferrous Met. Res., 1983, 11(1), p 47-51Google Scholar
  30. 30.
    A. Raman and K. Schubert, The Constitution of Some Alloy Series Related to TiAl3. II. Investigations in Some T-Al-Si and T4…6-In Systems, Z. Metallkd., 1965, 56(1), p 44-52Google Scholar
  31. 31.
    J. Schuster and H. Nowotny, Investigations of the Ternary-Systems (Zr, Hf, Nb, Ta)-Al-C and Studies, Z. Metallkd., 1980, 71(6), p 341-346Google Scholar
  32. 32.
    T. Magnusson and L. Arnberg, Density and Solidification Shrinkage of Hypoeutectic Aluminum-Silicon Alloys, Metall. Mater. Trans. A, 2001, 32(10), p 2605-2613CrossRefGoogle Scholar
  33. 33.
    V.D. Scott and C.T. Love, Quantitative Electron-Phobe Microanalysis, 2nd ed., Prentice Hall, Upper Saddle River, 1995Google Scholar
  34. 34.
    U.R. Kattner, J.-C. Lin, and Y.A. Chang, Thermodynamic Assessment and Calculation of the Ti-Al System, Metall. Trans. A, 1992, 23(8), p 2081-2090CrossRefGoogle Scholar
  35. 35.
    I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida, Phase Equilibria in the Ti-Al Binary System, Acta Mater., 2000, 48(12), p 3113-3123CrossRefGoogle Scholar
  36. 36.
    V.T. Witusiewicz, A.A. Bondar, U. Hecht, S. Rex, and T.Y. Velikanova, The Al-B-Nb-Ti System: III. Thermodynamic Re-evaluation of the Constituent Binary System Al-Ti, J. Alloys Compd., 2008, 465(1-2), p 64-77CrossRefGoogle Scholar
  37. 37.
    T. Wang, Z. Jin, and J.-C. Zhao, Thermodynamic Assessment of the Al-Zr Binary System, J. Phase Equilib., 2001, 22(5), p 544-551CrossRefGoogle Scholar
  38. 38.
    Y. Ma, C. Rømming, B. Lebech, J. Gjønnes, and J. Taftø, Structure Refinement of Al3Zr Using Single-Crystal X-Ray Diffraction, Powder Neutron Diffraction and CBED, Acta Crystallogr. B, 1992, 48(1), p 11-16CrossRefGoogle Scholar
  39. 39.
    R.J. Kematick and H.F. Franzen, Thermodynamic Study of the Zirconium-Aluminum System, J. Solid State Chem., 1984, 54(2), p 226-234ADSCrossRefGoogle Scholar
  40. 40.
    C. Colinet, Ab-initio Calculation of Enthalpies of Formation of Intermetallic Compounds and Enthalpies of Mixing of Solid Solutions, Intermetallics, 2003, 11(11-12), p 1095-1102CrossRefGoogle Scholar
  41. 41.
    C. Colinet and A. Pasturel, Phase Stability and Electronic Structure in ZrAl3 Compound, J. Alloys Compd., 2001, 319(1-2), p 154-161CrossRefGoogle Scholar
  42. 42.
    V. Raghavan, Al-Ti (Aluminum-Titanium), J. Phase Equilib. Diffus., 2005, 26(2), p 171-172CrossRefGoogle Scholar
  43. 43.
    T. Wang, Thermodynamic Assessment of the Al-Hf Binary System, J. Phase Equilib., 2002, 23(5), p 416-423CrossRefGoogle Scholar
  44. 44.
    C. Colinet and A. Pasturel, Phase Stability and Electronic Structure of the HfAl3 Compound, Phys. Rev. B, 2001, 64(20), p 205102ADSCrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  1. 1.Université Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations