Thermodynamic Calculation of HfB2 Volatility Diagram

Basic and Applied Research

Abstract

The thermodynamics of the oxidation of HfB2 at temperatures of 1000, 1500, 2000, and 2500 K have been studied using volatility diagrams. Both the equilibrium oxygen partial pressure (\( P_{{{\text{O}}_{2} }} \)) for the HfB2(s) to HfO2(s) plus B2O3(l) and the partial pressures of B-O vapor species formed due to B2O3(l) volatilization increase with increasing temperature. Vapor pressures of the predominant gaseous species also increase with \( P_{{{\text{O}}_{2} }} \). At 1000 K, the predominant vapor transition sequence is predicted be BO(g) → B2O2(g) → B2O3(g) → BO2(g) with increasing \( P_{{{\text{O}}_{2} }} \), and the predominant gas is BO2(g) with a pressure of 1.27 × 10−6 Pa under the condition of \( P_{{{\text{O}}_{2} }} \) = 20 kPa. At higher temperatures of 1500, 2000, and 2500 K, the system undergoes vapor transitions in the same sequence of B(g) → BO(g) → B2O2(g) → B2O3(g) → BO2(g). Under the same condition of \( P_{{{\text{O}}_{2} }} \) = 20 kPa, the predominant vapor species is B2O3(g) with pressures of 2.38, 4.49 × 103, and 3.55 × 105 Pa, respectively. Volatilization of B2O3(l) may produce porous HfO2 scale, which is consistent with the experimental observations of HfB2 oxidation in air. The present volatility diagram of HfB2 shows that HfB2 exhibits oxidation behavior similar to ZrB2, and factors other than volatility of gaseous species affect the oxidation rate.

Keywords

FactSage HfB2 oxidation thermodynamics volatility diagram 

References

  1. 1.
    S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, and J.A. Salem, Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use, J. Eur. Ceram. Soc., 2002, 22(14-15), p 2757-2767CrossRefGoogle Scholar
  2. 2.
    M.M. Opeka, I.G. Talmy, and J.A. Zaykosk, Oxidation-Based Materials Selection for 2000 °C + Hypersonic Aerosurfaces: Theoretical Considerations and Historical Experience, J. Mater. Sci., 2004, 39(19), p 5887-5904ADSCrossRefGoogle Scholar
  3. 3.
    R. Savino, M.D.S. Fumo, D. Paterna, and M. Serpico, Aerothermodynamic Study of UHTC-Based Thermal Protection Systems, Aerosp. Sci. Technol., 2005, 9(2), p 151-160MATHCrossRefGoogle Scholar
  4. 4.
    W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, Refractory Diborides of Zirconium and Hafnium, J. Am. Ceram. Soc., 2007, 90(5), p 1347-1364CrossRefGoogle Scholar
  5. 5.
    H. Li, L.T. Zhang, Q.F. Zeng, J.J. Wang, L.F. Cheng, H.T. Ren, and K. Guan, Crystal Structure and Elastic Properties of ZrB Compared with ZrB2: A First-Principles Study, Comput. Mater. Sci., 2010, 49(4), p 814-819CrossRefGoogle Scholar
  6. 6.
    H. Li, L.T. Zhang, Q.F. Zeng, H.T. Ren, K. Guan, Q.M. Liu, and L.F. Cheng, First-Principles Study of the Structural, Vibrational, Phonon and Thermodynamic Properties of Transition Metal Carbides TMC (TM = Ti, Zr and Hf), Solid State Commun., 2011, 151(1), p 61-66ADSCrossRefGoogle Scholar
  7. 7.
    Y.G. Wang, M. Zhu, L.F. Cheng, and L.T. Zhang, Fabrication of SiCw Reinforced ZrB2-Based Ceramics, Ceram. Int., 2010, 36(6), p 1787-1790CrossRefGoogle Scholar
  8. 8.
    T.A. Parthasarathy, R.A. Rapp, M. Opeka, and R.J. Kerans, Effects of Phase Change and Oxygen Permeability in Oxide Scales on Oxidation Kinetics of ZrB2 and HfB2, J. Am. Ceram. Soc., 2009, 92(5), p 1079-1086CrossRefGoogle Scholar
  9. 9.
    L. Kaufman, E.V. Clougherty, and J.B. Berkowitz-Mattuck, Oxidation Characteristics of Hafnium and Zirconium Diboride, Trans. Metall. Soc. AIME, 1967, 239(4), p 458-466Google Scholar
  10. 10.
    J.B. Berkowitz-Mattuck, High-Temperature Oxidation III. Zirconium and Hafnium Diborides, J. Electrochem. Soc., 1966, 113(9), p 908-914CrossRefGoogle Scholar
  11. 11.
    J.W. Hinze, W.C. Tripp, and H.C. Graham, The High-Temperature Oxidation Behavior of a HfB2 + 20 V/O Sic Composite, J. Electrochem. Soc., 1975, 122(9), p 1249-1254CrossRefGoogle Scholar
  12. 12.
    T.A. Parthasarathy, R.A. Rapp, M. Opeka, and R.J. Kerans, A Model for the Oxidation of ZrB2, HfB2 and TiB2, Acta Mater., 2007, 55(17), p 5999-6010CrossRefGoogle Scholar
  13. 13.
    C.B. Bargeron, R.C. Benson, R.W. Newman, A.N. Jette, and T.E. Phillips, Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride in the Temperature Range 1400 to 2100 °C, J. Hopkins APL Tech. Dig., 1993, 14(1), p 29-36Google Scholar
  14. 14.
    W.G. Fahrenholtz, The ZrB2 Volatility Diagram, J. Am. Ceram. Soc., 2005, 88(12), p 3509-3512CrossRefGoogle Scholar
  15. 15.
    V.L.K. Lou, T.E. Mitchell, and A.H. Heuer, Review—Graphical Displays of the Thermodynamics Of high-Temperature Gas-Solid Reactions and Their Application to Oxidation of Metals and Evaporation of Oxides, J. Am. Ceram. Soc., 1985, 68(2), p 49-58CrossRefGoogle Scholar
  16. 16.
    A.H. Heuer and V.L.K. Lou, Volatility Diagrams for Silica, Silicon Nitride, and Silicon Carbide and Their Application to High-Temperature Decomposition and Oxidation, J. Am. Ceram. Soc., 1990, 73(10), p 2789-2803CrossRefGoogle Scholar
  17. 17.
    T. Goto, High-Temperature Oxidation Behavior of Chemical Vapor Deposited Silicon Carbide, J. Ceram. Soc. Jpn., 2002, 110(10), p 884-889CrossRefGoogle Scholar
  18. 18.
    W.G. Fahrenholtz, Thermodynamic Analysis of ZrB2-SiC Oxidation: Formation of a SiC-Depleted Region, J. Am. Ceram. Soc., 2007, 90(1), p 143-148CrossRefGoogle Scholar
  19. 19.
    P. Barreiro, P. Rey, A. Souto, and F. Guitián, Porous Stabilized Zirconia Coatings on Zircon Using Volatility Diagrams, J. Eur. Ceram. Soc., 2009, 29(4), p 653-659CrossRefGoogle Scholar
  20. 20.
    C.M. Carney, Oxidation Resistance of Hafnium Diboride-Silicon Carbide from 1400 to 2000 °C, J. Mater. Sci., 2009, 44(20), p 5673-5681ADSCrossRefGoogle Scholar
  21. 21.
    C.M. Carney, T.A. Parthasarathy, and M.K. Cinibulk, Oxidation Resistance of Hafnium Diboride Ceramics with Additions of Silicon Carbide and Tungsten Boride or Tungsten Carbide, J. Am. Ceram. Soc., 2011. doi:10.1111/j.1551-2916.2011.04462.x
  22. 22.
    J.J. Wang, L.T. Zhang, Q.F. Zeng, L.F. Cheng, and Y.D. Xu, Modified Wagner Model for the Active-to-Passive Transition in the Oxidation of Si3N4, J. Phys. D, 2008, 41(11), p 115412CrossRefGoogle Scholar
  23. 23.
    J.J. Wang, L.T. Zhang, Q.F. Zeng, G.L. Vignoles, and A. Guette, Theoretical Investigation for the Active-to-Passive Transition in the Oxidation of Silicon Carbide, J. Am. Ceram. Soc., 2008, 91(5), p 1665-1673CrossRefGoogle Scholar
  24. 24.
    C. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen, Factsage Thermochemical Software and Databases, CALPHAD, 2002, 26(2), p 189-228CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • Hui Li
    • 1
  • Litong Zhang
    • 1
  • Qingfeng Zeng
    • 1
  • Laifei Cheng
    • 1
  1. 1.National Key Laboratory of Thermostructure Composite MaterialsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations