Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 32, Issue 3, pp 198–205 | Cite as

Diffusion of Germanium in Binary and Multicomponent Nickel Alloys

  • Ralf Rettig
  • Susanne Steuer
  • Robert F. Singer
Basic and Applied Research

Abstract

Interdiffusion and impurity diffusion of Ge is studied in Ni and multicomponent alloys over the temperature range of 1150-1250 °C. The diffusion is investigated using diffusion couples, which are evaluated using microprobe measurements. The interdiffusion coefficients are calculated with the den Broeder method, while the impurity diffusion coefficients are determined with the Hall method. A model for the diffusion simulation software DICTRA is developed by mobility assessments. Further on, the diffusion of Ge in the multicomponent superalloys PWA1483 and René N5 is investigated. The Ge diffusion coefficient in René N5 is 4.5 × 10−14 m2/s at 1180 °C which is similar to other alloying elements such as Co, Cr, Mo or Ta.

Keywords

assessment CALPHAD diffusion germanium nickel 

Notes

Acknowledgments

This work has received funds for the project GT6 of the KW21/1 framework from the German State Governments of Bavaria and Baden-Württemberg and from the German Science Foundation (DFG) for the project MM3 in the framework of the Research Training Group 1229/1. Karl Nigge is acknowledged for help with the diffusion couples and for performing the EPMA measurements.

References

  1. 1.
    R.F. Singer, Advanced Materials and Processes for Land-Based Gas Turbines, Mater. Adv. Power Eng., 1994, 2, p 1707-1729Google Scholar
  2. 2.
    B.B. Seth, Superalloys—The Utility Gas Turbine Perspective, Proceedings of the 9th International Symposium on Superalloys, Seven Springs, USA, 2000Google Scholar
  3. 3.
    R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006CrossRefGoogle Scholar
  4. 4.
    C.M.F. Rae, Alloy by Design: Modelling Next Generation Superalloys, Mater. Sci. Technol., 2009, 25(4), p 479-487CrossRefGoogle Scholar
  5. 5.
    P. Caron and T. Khan, Evolution of Ni-Based Superalloys for Single Crystal Gas Turbine Blade Applications, Aerosp. Sci. Technol., 1999, 3(8), p 513-523CrossRefGoogle Scholar
  6. 6.
    H. Harada, High Temperature Materials for Gas Turbines: The Present and Future, International Gas Turbine Congress, Tokyo, Japan, 2003Google Scholar
  7. 7.
    P. Heinz, A. Volek, R.F. Singer, M. Dinkel, F. Pyczak, M. Göken et al., Diffusion Brazing of Single Crystalline Nickel Base Superalloys Using Boron Free Nickel Base Braze Alloys, Defect Diffus. Forum, 2008, 273-276, p 294-299CrossRefGoogle Scholar
  8. 8.
    M.K. Dinkel, P. Heinz, F. Pyczak, A. Volek, M. Ott, R.F. Singer, et al., New Boron and Silicon Free Single Crystal-Diffusion Brazing Alloys, Proceedings of the 11th International Symposium on Superalloys, Seven Springs, USA, 2008Google Scholar
  9. 9.
    A. Schnell, “A Study of the Diffusion Brazing Process Applied to the Single Crystal Superalloy CMSX-4,” Ph.D. thesis, EPFL, Lausanne, 2004Google Scholar
  10. 10.
    B. Laux, S. Piegert, and J. Rösler, Advancements in Fast Epitaxial High Temperature Brazing of Single Crystalline Nickel Based Superalloys, Proceedings of the 11th International Symposium on Superalloys, Seven Springs, USA, 2008Google Scholar
  11. 11.
    D.S. Duvall, W.A. Owczarski, and D.F. Paulonis, TLP Bonding—A New Method for Joining Heat Resistant Alloys, Weld. J., 1974, 53(4), p 203-214Google Scholar
  12. 12.
    C.E. Campbell, W.J. Boettinger, and U.R. Kattner, Development of a Diffusion Mobility Database for Ni-base Superalloys, Acta Mater., 2002, 50(4), p 775-792CrossRefGoogle Scholar
  13. 13.
    B. Jönsson, Assessment of the Mobilites of Cr, Fe and Ni in fcc Cr-Fe-Ni Alloys, Z. Metallk., 1995, 86, p 686-692Google Scholar
  14. 14.
    Y.Q. Liu, D.J. Ma, and Y. Du, Thermodynamic Modeling of the Germanium-Nickel System, J. Alloy Compd., 2010, 491(1-2), p 63-71CrossRefGoogle Scholar
  15. 15.
    L. Boltzmann, Zur Integration der Diffusionsgleichung bei variablen Diffusionskoeffizienten (Integration of the Diffusion Equation with Variable Diffusion Coefficients), Ann. Phys., 1894, 53, p 959-964, in GermanCrossRefGoogle Scholar
  16. 16.
    C. Matano, On the Relation between the Diffusion-Coefficients and Concentrations of Solid Metals (The Nickel-Copper System), Jpn. J. Phys., 1933, 8, p 109-113Google Scholar
  17. 17.
    F. Sauer and V. Freise, Diffusion in binären Gemischen mit Volumenveränderung (Diffusion in Binary Mixtures Considering Volume Changes), Z. Elektrochem., 1962, 66(4), p 353-362Google Scholar
  18. 18.
    F.J.A. den Broeder, A General Simplification and Improvement of the Matano-Boltzmann Method in the Determination of the Interdiffusion Coefficients in Binary Systems, Scripta Metall., 1969, 3, p 321-326CrossRefGoogle Scholar
  19. 19.
    A.B. Kamara, A.J. Ardell, and C.N.J. Wagner, Lattice Misfits in Four Binary Ni-Base γ/γ′ Alloys at Ambient and Elevated Temperatures, Met. Mater. Trans. A, 1996, 27, p 2888-2896CrossRefGoogle Scholar
  20. 20.
    A.N. Nash and P. Nash, The Ge-Ni (Germanium-Nickel) System, Bull. Alloy Phase Diagr., 1987, 8(3), p 255-264CrossRefGoogle Scholar
  21. 21.
    L.D. Hall, An Analytical Method of Calculating Variable Diffusion Coefficients, J. Chem. Phys., 1953, 21(1), p 87-89ADSCrossRefGoogle Scholar
  22. 22.
    D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed., Taylor & Francis, Boca Raton, 2009Google Scholar
  23. 23.
    J. Ågren, Numerical Treatment of Diffusional Reactions in Multicomponent Alloys, J. Phys. Chem. Solids, 1982, 43(4), p 385-391ADSCrossRefGoogle Scholar
  24. 24.
    J. Ågren, Diffusion in Phases with Several Components and Sublattices, J. Phys. Chem. Solids, 1982, 43(5), p 421-430ADSCrossRefGoogle Scholar
  25. 25.
    J.O. Andersson and J. Ågren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72(4), p 1350-1355ADSCrossRefGoogle Scholar
  26. 26.
    N. Saunders, M. Fahrmann, and C. Small, The Application of CALPHAD Calculations to Ni-Based Superalloys, Proceedings of the 9th International Symposium on Superalloys, Seven Springs, USA, 2000Google Scholar
  27. 27.
    S. Mantl, S.J. Rothman, L.J. Nowicki, and J.L. Lerner, The Tracer Diffusion of Ge in Ni Single Crystals, J. Phys. F Met. Phys., 1983, 13, p 1441-1448ADSCrossRefGoogle Scholar
  28. 28.
    H. Letaw, L.M. Slifkin, and W.M. Portnoy, Self-Diffusion in Germanium, Phys. Rev., 1954, 93(4), p 892-983ADSCrossRefGoogle Scholar
  29. 29.
    H. Letaw, W.M. Portnoy, and L. Slifkin, Self-Diffusion in Germanium, Phys. Rev., 1956, 102(3), p 636-639ADSCrossRefGoogle Scholar
  30. 30.
    H. Widmer and G.R. Gunther-Mohr, Helv. Phys. Acta, 1961, 34(6), p 635Google Scholar
  31. 31.
    G. Vogel, G. Hettich, and H. Mehrer, Self-Diffusion in Intrinsic Germanium and Effects of Doping on Self-Diffusion in Germanium, J. Phys. C Solid State, 1983, 16(32), p 6197-6204ADSCrossRefGoogle Scholar
  32. 32.
    F. Guillemot, M. Boliveau, M. Bohn, J. Debuigne, and D. Ansel, On the Diffusion in the Mo-Ta Refractory System, Int. J. Refract. Met. H, 2001, 119, p 183-189CrossRefGoogle Scholar
  33. 33.
    I. Thibon, D. Ansel, and T. Gloriant, Interdiffusion in β-Ti-Zr Binary Alloys, J. Alloy Compd., 2009, 470, p 127-133CrossRefGoogle Scholar
  34. 34.
    K.-I. Hirano, R.P. Agarwala, B.L. Averbach, and M. Cohen, Diffusion in Cobalt-Nickel Alloys, J. Appl. Phys., 1962, 33(10), p 3049-3054ADSCrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • Ralf Rettig
    • 1
  • Susanne Steuer
    • 1
  • Robert F. Singer
    • 1
  1. 1.Department of Materials Science and Engineering, Institute of Metals Science and TechnologyUniversity of ErlangenErlangenGermany

Personalised recommendations